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Rajalingham R, Stacey RG, Tsoulfas G, Musallam S. Modula-
tion of neural activity by reward in medial intraparietal cortex is sensitive to
temporal sequence of reward. J Neurophysiol 112: 1775–1789, 2014. First
published July 9, 2014; doi:10.1152/jn.00533.2012.—To restore move-
ments to paralyzed patients, neural prosthetic systems must accurately
decode patients’ intentions from neural signals. Despite significant
advancements, current systems are unable to restore complex move-
ments. Decoding reward-related signals from the medial intraparietal
area (MIP) could enhance prosthetic performance. However, the
dynamics of reward sensitivity in MIP is not known. Furthermore,
reward-related modulation in premotor areas has been attributed to
behavioral confounds. Here we investigated the stability of reward
encoding in MIP by assessing the effect of reward history on reward
sensitivity. We recorded from neurons in MIP while monkeys per-
formed a delayed-reach task under two reward schedules. In the
variable schedule, an equal number of small- and large-rewards trials
were randomly interleaved. In the constant schedule, one reward size
was delivered for a block of trials. The memory period firing rate of
most neurons in response to identical rewards varied according to
schedule. Using systems identification tools, we attributed the sched-
ule sensitivity to the dependence of neural activity on the history of
reward. We did not find schedule-dependent behavioral changes,
suggesting that reward modulates neural activity in MIP. Neural
discrimination between rewards was less in the variable than in the
constant schedule, degrading our ability to decode reach target and
reward simultaneously. The effect of schedule was mitigated by
adding Haar wavelet coefficients to the decoding model. This raises
the possibility of multiple encoding schemes at different timescales
and reinforces the potential utility of reward information for prosthetic
performance.

decode; medial intraparietal area; neural prosthetics; reach; reward

NEURONS IN THE PARIETAL REACH region (PRR)—an area that
overlaps the medial intraparietal area (MIP) and V6A in
monkeys (Batista et al. 1999; Snyder et al. 2000)—are acti-
vated by reach plans to targets in space (Snyder et al. 1997).
The firing rate of these neurons also varies with the reward
associated with the planned reach (Musallam et al. 2004).
Successful decoding of reach goals and reward from PRR
activity established this region as a viable source of control
signals for neural prosthetic systems (Andersen et al. 2010).
Similarly, many studies have demonstrated the utility of inva-
sive and noninvasive signals from other brain areas to drive
prosthetic devices (Birbaumer 2006; Hatsopoulos and Dono-
ghue 2009). Despite this progress, the dearth of information

extracted from brain signals has hindered the development
of prosthetic systems that can emulate natural movements
(Gilja et al. 2011; Tehovnik et al. 2013). The use of reward
to bias or reinforce an action or to assess a user’s cognitive
state, motivation, and preferences may improve the perfor-
mance of prosthetic systems (Andersen et al. 2004; Zander
and Jatzev 2009). Birbaumer recently emphasized the sig-
nificance of reward for prosthetic systems by noting that
severely paralyzed patients cannot learn to control a pros-
thetic device after the disengagement of the reward system
(Birbaumer 2006). Reward has been used to improve the
classification of motor signals recorded from rat motor
cortex (Mahmoudi et al. 2011). Similarly, decoding pre-
ferred rewards from neurons in PRR increased our ability to
decode reach goals (Musallam et al. 2004). Very few stud-
ies, however, have investigated the potential utility of re-
ward for prosthetic performance. We set out to elucidate the
stability of reward sensitivity in MIP neurons. The ability of
reward to directly modulate the activity of reach neurons has
been disputed and is also addressed (Maunsell 2004).

Reward can influence the activity of neurons in cortical and
subcortical structures throughout the human and monkey brain
(Barraclough et al. 2004; Ikeda and Hikosaka 2003; Mi-
namimoto et al. 2005; Musallam et al. 2004; O’Doherty 2004;
Padoa-Schioppa 2011; Platt and Glimcher 1999; Roesch and
Olson 2004; Schultz 2000, 2006; Sugrue et al. 2004; Wallis
and Miller 2003). Neural activity in the lateral intraparietal
area (LIP)—an area in the posterior parietal cortex (PPC)
implicated in planning and executing saccades and shifts of
attention—is correlated with decision-making variables includ-
ing the choice probability based on a leaky integration of
acquired reward history (Bisley and Goldberg 2003; Boucher
et al. 2007; Dorris and Glimcher 2004; Gold and Shadlen 2001,
2007; Gottlieb et al. 1998; Kiani et al. 2008; Kiani and Shadlen
2009; Peck et al. 2009; Platt and Glimcher 1999; Schall and
Thompson 1999; Shadlen and Newsome 2001; Sugrue et al.
2004). Neural activity correlated with reward history can
potentially track the acquired reward per unit time (Shadmehr
et al. 2010) but may lead to unstable reward representation
(Estepp et al. 2011; Kacelnik 1997; Krusienski et al. 2011;
Shadmehr et al. 2010).

The ability of reward to modulate neural activity in motor
planning areas is controversial (Leathers and Olson 2012;
Padoa-Schioppa and Assad 2006; Roesch and Olson 2004).
Reward-related modulation of oculomotor activity in LIP and
prefrontal cortex has been attributed to changes in movement
speed or movement reaction time or to changes in attention or
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motivation (Hare et al. 2008, 2011; Leathers and Olson 2012;
Maunsell 2004; Padoa-Schioppa and Assad 2006). Much less
is known about reward encoding in the reach system. It is
unclear whether reward sensitivity in MIP reflects a complex,
time-dependent signal. Similarities with LIP are expected, but
differences may also arise as the reach system must consider
the added metabolic cost and added risk of limb movements
(Izawa et al. 2008; Liu and Todorov 2007; O’Sullivan et al.
2009; Scott 2004).

We investigated the sensitivity of MIP neurons to identical
rewards presented in different sequences. We hypothesize that
the sensitivity of neurons to identical rewards will vary accord-
ing to context, presented here as reward history. This is
consistent with many studies that have shown that animals
prefer a low-variance reward source when reward magnitude is
varied (Buchkremer and Reinhold 2010; Kacelnik and Bateson
1997). Reach trials ending with the delivery of small and large
rewards appeared in separate blocks of trials or in randomly
interleaved trials. We found MIP neurons with variable reward
sensitivities dependent on the temporal sequence of reward.
The presence of the reward schedules degraded our ability to
decode reward reliably. However, decoding using models
based on Haar wavelet coefficients improved decode perfor-
mance. We also confirmed that the reward response in MIP is
not due to changing behavioral metrics.

MATERIALS AND METHODS

Subjects and Preparatory Surgery

Data were collected from three awake, behaving male monkeys
(Macaca mulatta, monkeys F, H, and M), weighing 5.6, 6.5, and 11.9
kg, respectively. All surgical and experimental procedures complied
with Canadian Council of Animal Care guidelines and were approved
by the McGill University Animal Care Committee.

All surgical procedures were performed under sterile conditions.
Monkeys were first implanted with a MRI-compatible head post
(Rogue Research) and trained on the experimental paradigm until they
were thoroughly familiar with the task. We then performed a second
surgery to implant a 2-cm circular recording chamber (Crist Instru-
ment, IAC series) on the contralateral side of the reaching right arm
of monkeys H and F. Chamber placement was guided stereotaxically
and centered at posterior 7 mm, lateral 5 mm in monkey F. For monkey
H, we placed the chamber in a position that maximized access to the
medial bank of the intraparietal sulcus as confirmed by Brainsight, a
neuro-navigation system (Rogue Research). We secured the chamber
in place with MRI-compatible ceramic screws (Rogue Research) and
Simplex P bone cement (Stryker, Hamilton, ON, Canada). For monkey
M, we implanted two 16-electrode arrays (MicroProbe, Gaithersburg,
MD) in the left MIP, guided by Brainsight (Rogue Research). The
length of the electrodes ranged from 3 to 6 mm. Monkeys were given
glycopyrrolate intramuscularly at a dose of 0.005 mg/kg to eliminate
excessive saliva. General anesthesia was induced with ketamine at 10

mg/kg and maintained with isoflurane at 1–4% delivered through an
intubation tube. After the surgical procedures, monkeys received
medicine for analgesia for 10 days. The monkeys were given a
minimum of 14 days to recover. Monkeys were weighed and their
health and growth monitored daily. Animals were also pair-housed
and had constant access to exercise via a jungle gym on all days,
including experimental days. Each monkey had its own recording
schedule that ensured that experiments started at the same time every
session. Monkeys were given fresh fruits in the lab after all completed
sessions.

Behavioral Task

The monkeys performed the experiment in a dimly lit Faraday
chamber. Each animal was seated in a chair within arm’s reach of a
touch screen (ELO Touch) that was coupled to a monitor. The only
light in the chamber emanated from visual cues displayed on the
monitor and the monitor’s low ambient output. Monkeys reached the
touch screen through an opening in the chair on the side of their
reaching hand (right arm in all animals). The nonreaching hand was
obstructed. Behavior was controlled by a real-time system (LabVIEW
RT, National Instruments). Eye position was monitored with an
infrared reflection camera (ISCAN, Boston, MA), and hand position
was monitored with the acoustic touch screen. Monkeys received juice
rewards for correctly performing the task.

We trained the monkeys on the behavioral task, illustrated in
Fig. 1A, for several months before collecting data. To initiate a trial,
monkeys touched a central green circular target and visually fixated a
red target located in the center of a touch screen for 500 ms (fixation
period). A cue (circular green target) was then flashed for 300 ms in
one of four possible locations in the periphery. The cue indicated the
target of the upcoming reach, while the size of the cue indicated the
reward magnitude for the current trial. A randomized delay period
(1.2–1.7 s) followed (memory period), during which monkeys had to
maintain the visual fixation and the hand contact established in the
fixation period. The central green target was then extinguished,
instructing the monkeys to reach to the location previously indicated
by the extinguished cue flash (“go”). Monkeys had to touch the screen
inside a 2.5-cm circle centered on the target for 400 ms without
breaking visual fixation. If successful, monkeys were rewarded with
juice. The association between cue size and reward magnitude was
randomized across different days. Monkeys were thoroughly trained
on only two cue-reward associations (amounting to reversal of cue-
reward association).

Monkeys did not always reach their daily minimum fluid intake
during the experiment, as we stopped the session after a full data set
was recorded even if satiety was not reached (equal to the minimum
daily total fluid intake established with procedures outlined by the
McGill University Animal Care Committee). This strategy reduced
the effect of prolonged experiments that could change the subjective
value of reward within a schedule. Monkeys were supplemented with
water to meet their individualized daily minimal total volume or more
after all recording sessions. All monkeys received twice their minimal
total volume at least 1 day per week.

Fig. 1. A: sequence of memory reach task. 1) Fixate: to initiate the trial, the animal must fixate the red target while touching the green target. 2) Cue: a peripheral
cue is flashed while the animal fixates; magnitude of the expected reward is reflected in the size of the cue. 3) Memory: after the extinction of the peripheral
cue, the animal must fixate the red target while touching the green target. 4) Go: extinction of the green target instructs the animal to initiate a reach toward
the remembered cue location. 5) Reward: upon successful completion of a reach, the cued reward value is delivered. B: delayed-reach task under 2
conditions: In the constant-reward schedule, either a small (top) or a large (middle) reward was indicated and delivered for a set of trials. In the variable
reward schedule (bottom), small and large rewards were randomly interleaved trial by trial for a set of trials. Each recording session consisted of a block
of trials with a variable-reward schedule as well as blocks with both small and large constant-reward schedules. The expected value of reward received
in either constant- or variable-reward schedules was identical. C, left: approximate position of recording chamber on rhesus brain. Center: position of
recorded neurons in XY plane relative to chamber (circle) for monkeys F and H. The intraparietal sulcus (IPS) is labeled for reference. Right: position of
chronically implanted microelectrode arrays in monkey M.
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Reward Schedules

In this study, we investigated the sensitivity of reach neurons in
MIP to identical rewards presented in different schedules. The volume

of small rewards was half the volume of large rewards. The monkeys
performed a delayed-reach task under two reward schedules.

Constant-reward schedule. Only one reward magnitude (small or
large) was indicated and delivered for a set of trials (see Fig. 1B, top).
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Variable-reward schedule. An equal number of small and large
reward magnitudes were randomly interleaved trial by trial for a set of
trials (see Fig. 1B, bottom).

Each recording session consisted of a block of trials with a
variable-reward schedule and blocks with both small and large con-
stant-reward schedules. The mean volume of reward received in the
constant- and variable-reward schedules was identical. For example, a
variable block of 40 trials consisting of 20 small- and 20 large-reward
trials in random order was followed by a block of 20 small-reward
trials and 20 large-reward trials. The number of trials was the same
across reach directions. Blocks with trials interrupted by pauses or that
affected time to completion were not analyzed. To avoid capturing
nonstationary effects, the schedules were randomly ordered across
recording sessions; some days started with a constant small-reward
block and others started with a constant large- or variable-reward
block. The mean (�SD) number of trials was 439 (�165), consisting
of 2.47 (�0.75) schedule cycles for each session. The association
between cue size and reward size was randomly interchanged across
recording sessions: 34% of all neurons were recorded when a small
target cue indicated a large reward.

Electrophysiology

Extracellular recordings in monkeys F and H were performed with
a single channel from a multichannel micromanipulator system (NAN
Drive, NAN Instruments). Before each recording session, a 23-gauge
stainless steel guide tube containing a 120-mm tungsten microelec-
trode (FHC, Pl/Ir impedance: 1 M�) was placed over the appropriate
cortical location (in the XY plane) and lowered onto the dura mater
surface. Thus the guide tube served as the electrical ground. The
electrode was then lowered into the cortex to a desired depth ranging
from 2 to 8 mm and left to rest from 15 to 60 min before any
subsequent movements. Single-unit data were collected during a 4-mo
period. We did not map the spatial response fields of neurons or
selectively record from neurons that were modulated by reward or
direction but recorded from all neurons stabilized for recording. In
total, 89 cells—40 from monkey F and 49 from monkey H—were
recorded over 45 separate recording sessions.

We recorded an additional 46 neurons over one session, using a
multielectrode array implanted in monkey M. Chronically implanted
microelectrode array recordings allowed us to record from neurons
that are stable over an experimental session. This recording provided
a control for possible nonstationary effects associated with isolation of
neurons. Additionally, by sampling multiple neurons simultaneously,
this data set was used for offline decoding of behavioral variables
from the neural population. Figure 1C, center, depicts the location of
the electrode tip for all cells relative to the implanted chamber for
monkeys F and H. Figure 1C, right, shows the location of the
chronically implanted arrays for monkey M.

Single-channel/multichannel recordings were filtered (250–8,000
Hz for spikes) and amplified with commercially available systems
(Plexon). Each channel was digitized (at sampling rates of 40 kHz for
spikes) and continuously recorded to disk for further analysis. Spike
waveforms were sorted online with commercial software (Plexon) and
offline with custom software before being visually inspected.

Data Analysis

Reward modulation. Only successful trials were analyzed. We
focused our analysis on the neural activity during the memory period
because this epoch is separated from sensory and motor signals. We
define the memory period firing rate as the number of spikes per
second in an 800-ms window beginning 200 ms after the cue offset.
We used a three-way ANOVA to test the effect of direction, reward
magnitude, reward schedule, and their interactions on neural activity.
To quantify the strength of tuning to these factors, we used an
information theoretic metric, mutual information (MI) (Grunewald et

al. 1999), to measure the amount of reward information contained in
the neural data. The mutual information between two random vari-
ables X and Y is defined as I(X;Y) � H(X) � H(X|Y), in which H(.) is
entropy. Thus, intuitively, I(X;Y) measures the decrease in uncertainty
about X that results from knowing Y. In addition, MI is a nonpara-
metric measure of codependence, in contrast to regression analyses
that assume linear or other parametric priors. Because we express MI
as the number of bits required to encode I(X;Y), we normalize mutual
information by H(X,Y), the joint entropy of X and Y, to get a
scale-invariant metric of information. Furthermore, conditional mu-
tual information (CMI) extends this notion to MI of two random variables
X and Y conditioned on a third variable, Z: I(X;Y|Z) � H(X|Z) �
H(X|Y,Z). This metric is the decrease in uncertainty about X that
results from knowing Y, given that Z is already known. This metric is
a measure of the amount of new information about X present in Y,
independent of Z. These information theoretic measures are well
suited for extracting stimulus-response relationships (Doya 2007).

To infer the significance of these metrics for each neuron, we used
an exact test, or permutation test (Fisher 1955). We computed a null
distribution of the metric from randomly shuffled data (1,000 times)
and estimated the empirical probability of a result greater than or
equal to the observed metric. For example, if 20 of 1,000 MI estimates
in the null distribution were greater than the MI estimate computed on
the original data, the P value was equal to 0.02.

A paired t-test on the MI distribution over all neurons tested for
changes in MI at the population level. To infer significance of changes
in MI between schedules at the single-neuron level, we compared
bootstrapped distributions of the MI estimates, using a two-sample
t-test. We obtained bootstrap distributions by recalculating the MI of
resampled data (with replacement) 1,000 times.

Modeling and identification. Reward modulation of neural activity
has previously been modeled with a priori parametric models and
nonparametric regression analyses (Bayer and Glimcher 2005; Lau
and Glimcher 2005; Lee and Seo 2007; Seo and Lee 2007; Sugrue et
al. 2004). We combined these approaches by selecting the optimal
function of reward with a nonparametric regression approach from
systems identification and validated the function by comparing it to a
parametric leaky integration of reward model.

To model firing rate as a function of reward magnitude alone, the
effects of directional tuning were first removed via normalization of
firing rates by direction, by computing the z score of firing rates per
direction. This normalization step is justified, as the neural responses
to reward and direction were separable (see RESULTS). For both
parametric and nonparametric modeling analyses, the input u(t) was a
time series of rewards and the output y(t) was a time series of neuronal
firing rates. Specifically, u(t) was assigned a value of 1 and �1 for
preferred and null rewards (preference was determined from neural
activity in the constant schedule). The z score of the firing rate signal
was used for y(t) to account for a constant bias (by forcing the output
to have zero mean).

We also fit the data with parametric regression analysis previ-
ously used as a reward-based model of neural firing rate in area LIP
(Sugrue et al. 2004). The output of this model (representing firing
rate) is a convolution of the input (reward) with a decaying
exponential kernel parameterized by a single value, a time constant
�. As an existing model of the dependence of firing rate on reward,
the purpose of this model was to provide a benchmark for com-
parison and validation of the nonparametric fits. Figure 2A depicts
a conceptual diagram of this model for two values of �; convolving
the time series of reward magnitudes (Fig. 2A, left) with the
exponential kernels shown in Fig. 2A, center, yields the curves
depicted in Fig. 2A, right. A larger � results in more a slowly
decaying kernel yielding an output constructed from a long mem-
ory of past rewards (see Fig. 2A, right, solid black trace). In
contrast, a small � results in a quickly decaying kernel and a
fast-varying model output (see Fig. 2A, right, dashed gray trace).
We refer to this model as EXP to describe its exponential kernel.
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For each neuron, we simulated 1,000 choices of � [log distributed,
between 0 and log(1,000)] and selected the optimal � based on the
fit of the resulting EXP model to the experimental data.

In addition to the parametric EXP model, we used a nonparametric
systems identification approach to model neurons as systems whose
outputs (firing rates) depend on past values of outputs and inputs
(rewards). Similar autoregressive frameworks have been used to
model behavioral and neural processes elsewhere (Scheidt et al. 2001;
Truccolo et al. 2005). The modeling assumptions are that the system
accounting for reward dependence is linear and that its properties are
static over time. The resulting data were fit to an autoregressive with
exogenous terms (ARX) model, described by

y�tn� � a1y�tn�1� � . . . �aKy�tn�K� � b0u�tn� � b1u�tn�1�
� . . . �bLu�tn�L� � e

where ai, bj are weights to be estimated. The additional signal e is the
system disturbance and accounts for noise or other variables not
considered. The parameters K and L are the orders of the delays and
indicate how many past values of the output and input are included in
the regression (Fig. 2B). The optimal orders were selected by mini-
mizing the Akaike information criterion (AIC), which provides a
conservative trade-off between model error and model complexity
(Akaike 1974). To prevent overfitting, the data were split into two
contiguous halves for model order estimation and validation. Thus the

selected ARX model is as an optimal linear system that does not
overfit the data. We chose the ARX model because the resultant
optimal weight vectors sometimes oscillated and did not always peak
at the first lag time. Because the impulse responses have infinite
lengths but can decay quickly, we estimated the conservative effec-
tive duration of an impulse response function (IRF) as an approximate
time constant, using (1 � r)�1, where r is the radius of the largest pole
(Orfanidis 1996).

For both EXP and ARX models, we used all trials to fit the model
parameters for each neuron. Because of insufficient data per neuron
(�2.5 cycles through the experiment on average), we did not cross-
validate the model fitting procedure. We quantified the fit of both
models to neural data with Pearson’s correlation coefficient and
imposed a criterion of P � 0.01 for statistically significant model
correlations.

Classification. To assess the effects of reward schedule on decode
performance, we performed offline classification of reach direction (4
classes) and reward magnitude (2 classes) for constant and variable
schedules. We use the notation Direction*Reward to indicate simul-
taneous classification of reward and direction from a group with eight
unique classes formed from all possible directions and rewards
(chance � 0.125). The number of trials per class was balanced across
classes and schedule conditions. The data were randomly partitioned
into five subsets. The classifier was trained with four subsets, leaving
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Fig. 2. A: conceptual diagram of the EXP model. Left: a time series of reward magnitudes, the input to the model. Center: 2 example exponential kernels, differing
in their time constant �. By convolving the reward input with each kernel, we get the corresponding model outputs shown at right. Note that a larger � results
in more slowly decaying kernel and, consequently, a long memory of past rewards (solid black trace). In contrast, a small � results in a quickly decaying kernel
and a fast-varying model output (dashed gray trace). We refer to this model as EXP to describe its exponential kernel. For each neuron, we simulated 1,000
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The introduction of feedback of past firing rates does not change the relationship between the firing rate and reward. Instead, it creates an infinite impulse response
(IIR) filter that estimates the weights of infinitely many past inputs fitting a small number of weights. Thus the implication of the ARX model is that the firing
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the remaining subset as the test set. The classification was repeated
five times so that each subset was the test set at least once. This
fivefold cross-validation procedure generated five classification esti-
mates. The number of neurons in a set used in the classification was
randomly selected with replacement from 32 MIP neurons recorded
from a multielectrode array. The sampling of neurons for each set was
repeated 10 times. For example, when classifying with 15 neurons, we
randomly chose 15 neurons from our set of 32 neurons, classified the
test data using fivefold cross-validation as described above, and
repeated this procedure 10 times. Unless noted otherwise, the decode
success in percentage points is reported as mean � SD. All compar-
isons between decode performance were performed with a two-way
t-test with unequal variances with n � 50 and a significance threshold
set at P � 0.05.

We performed the classification with memory period firing rates,
defined as the number of spikes in 800 ms of the memory period
starting 200 ms after cue offset, using a linear discriminant analysis
with uniform priors (Duda et al. 2001). We used this simple model to
uncover the effect of reward schedule on performance. Classification
was also performed with Haar wavelet coefficients projected onto 512
ms of the memory period starting 200 ms after cue offset. Haar
wavelet coefficients capture the mean number of spikes in temporal
windows of arbitrary length, can detect local changes or dynamic
structure in the firing rate (Cao 2003; Musallam et al. 2004), and are
favorable when analyzing nonstationary data (Mallat 1999). The 0th
Haar coefficient corresponds to the mean firing rate. The method used
to generate wavelets is described in the supplementary materials of
Musallam et al. (2004). Only the coefficients from the training data,
and not the test data, were tested for significance with a sorting
algorithm based on information theory (Cao 2003).

Controls. Because we recorded from all neurons encountered, we
first verified that the memory period spiking activity of neurons was
significantly different from baseline for one or more conditions. We
defined baseline activity as the number of spikes per second in 500 ms
of neural data prior to cue onset. For the majority of recorded neurons
(114/135, 84%), the memory period firing rate was significantly
different from the baseline (P � 0.05, t-test), confirming that the
memory period is a meaningful trial epoch for analysis. We also
confirmed that neural modulation was not a response to the visual
stimuli by randomly switching the association between cue size and
reward size for different recording sessions. Preferred reward was not
significantly different between cue size associations (P � 0.3034, n �
135, t-test); neurons did not systematically prefer a larger visual cue.

RESULTS

To identify neurons sensitive to reach direction, reward
magnitude, or reward schedule, we performed a three-way

ANOVA (P � 0.05) on the memory period firing rate of all
neurons (Table 1). Reward magnitude, reward schedule, and
interaction between magnitude and schedule modulated the
firing of 109 of 135 neurons. The activity of 74 neurons was
sensitive to reward magnitude (column R under “All Cells,”
Table 1) while 72% of these neurons (53/74) also showed
significant reward magnitude and schedule interaction effects
(column R�S under “Reward Magnitude Selective,” Table 1).
Conversely, the activity of 72 neurons was modified by reward
schedule (column S under ’All Cells,“ Table 1), while 56% of
these neurons (40/72) showed significant reward magnitude
and schedule interaction effects (column R�S under “Reward
Schedule Selective,” Table 1).

Reward magnitude and reach direction independently mod-
ulated the firing of most neurons. Of the 67 and 74 neurons
selective for reach direction and reward, only 15 neurons were
sensitive to interactions between these two variables. Further-
more, 47% (35/74) and 57% (41/72) of neurons that responded
to changes in reward magnitude and schedule in the memory
period also encoded the reach direction in this period (columns
D under “Reward Magnitude Selective” and Reward Schedule
Selective,” Table 1). Neural activity selective for reach direc-
tion was also present in the cue and motor periods of many
neurons. The proportion of reward neurons and schedule neu-
rons sensitive to direction increased to 75% (56/74) and 82%
(59/72) when considering neural activity recorded in the motor
or cue epochs. The large number of neurons sensitive to reward
magnitude may be explained by our decision to record from all
stable cells encountered in MIP.

Effect of Schedule on Neural Sensitivity to Reward

The interaction values in Table 1 suggest that the neural
response to reward magnitude was not static but was dependent
on the reward schedule. Figure 3A shows the peristimulus time
histogram for an example neuron that responded to reward. For
both schedules, large-reward trials elicited higher firing rates
than small-reward trials. Even though reward magnitudes were
the same for both schedules, the range between the firing for
large and small rewards was greater during the constant sched-
ule (Fig. 3B). The population showed a similar trend across all
monkeys and recording procedures (Fig. 3C). The activity of
73% of reward- and schedule-sensitive neurons (80/109) [or
59% (80/135) of all recorded neurons] differed for small- and

Table 1. Numbers of neurons that responded to task variables and their interactions

Total

All Cells (135)

Reward
Magnitude

Selective (74)

Reward
Schedule

Selective (72)

D R S D�R D�S R�S D�R�S R S R�S D R�S D R�S

Monkey H 49 32 19 23 7 5 19 7 35 11 12 17 11
Monkey F 40 13 24 24 7 2 24 5 35 9 18 9 14
Monkey M 46 22 31 25 1 1 25 0 39 15 23 15 15
Total 135 67 74 72 15 8 68 12 109 35 53 41 40

Values are numbers of neurons that responded (P � 0.05, 3-way ANOVA) to task variables and their interactions, separated by monkey. The 	Total	 column
indicates the total number of neurons recorded from each monkey. The columns under “All Cells” indicate the number of cells with significant modulation of
memory period firing rate by task variables. The task variables D, R, and S correspond to reach direction, reward magnitude, and reward schedule, respectively.
We use “�” and “ ” to denote interaction effects and the logical disjunction (OR) operator, respectively. For example, the R S R�S column highlights the number
of cells with significant modulation by reward magnitude or schedule, or an interaction of the two. Ten cells did not vary their activity with any of these.
Additional characterizations of directional tuning and reward interaction effects are provided for the subset of reward magnitude and schedule selective cells in
the 	Reward Magnitude Selective	 and 	Reward Schedule Selective	 columns, respectively.
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large-reward trials during the constant schedule. During the
variable schedule, this number decreased to 24 [22% of re-
ward- and schedule-sensitive neurons, or 18% of all recorded
neurons (24/135)]. We observed a similar difference in the
number of reward-sensitive cells across schedules when memory
period firing rates were normalized by pretrial baseline activity
(70/135 in the constant schedule vs. 29/135 in the variable schedule).
Increased firing rate was not always associated with the promise of
large rewards. In the constant schedule, a large reward increased the
firing rate of 61% (51/83) of cells selective for reward. In the variable

schedule, 58% of neurons selective for reward had an analogous
response.

We used MI to quantify the discriminability between the two
reward magnitudes. For individual neurons, the MI during
constant schedules was significantly greater than the MI during
variable schedules (P � 0.05, 2-sample t-test on bootstrapped
distributions) for 87% (95/109) of reward-responding neurons
(Fig. 4A). At the population level, the MI during the variable
schedule was significantly lower than the MI during the con-
stant schedule (P � 6.8 � 10�7, paired t-test; see Fig. 4B).
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Fig. 3. A: example peristimulus time histogram (PSTH): PSTH (mean � SE) for an example neuron for all combinations of reward magnitudes (small/large) and
schedules (constant/variable), aligned to trial start. Vertical gridlines indicate important trial events. This neuron increased the firing rate for trials with large
rewards over small rewards, especially in the memory period. The neuron’s response to equal reward magnitudes varied significantly between the 2 reward
schedules. B: reward tuning curve. For the example neuron in A, the reward tuning curve shows that the memory period firing rate of this cell has significant
reward modulation but the strength of this reward tuning varies with the reward schedule; there is greater discrimination between small and large rewards in the
constant schedule than in the variable schedule. C: population reward responses. The reward responses of all recorded neurons are shown, separated by schedule.
The scattered points compare the firing rate (mean � SE) to small vs. large rewards in constant (left)- and variable (right)-reward schedules for all recorded
neurons. Filled data points indicate a significant difference between the activities for small vs. large rewards. For the constant schedule, 59% (80/135) of recorded
cells showed a significant difference in firing rate between reward magnitudes (P � 0.05, ANOVA). Only 17% (24/135) of neurons exhibited a difference in
the variable schedule (P � 0.05, ANOVA). This result was consistent across monkeys H, F, and M and for both recording procedures. At the population level,
we find that neural activity in the medial intraparietal area (MIP) is modulated differently for the same reward between the constant and variable schedules.
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Decode Performance of Identical Rewards Varies with Schedule

We next examined the influence of reward schedule on
our ability to decode reward magnitude. During the constant
schedule, reward magnitude was classified with a maximum
success rate of 83.9 � 5.3% (Fig. 4C, top). This result is
significantly greater than the decode performance during the
variable schedule (VS: 65.0 � 6%, chance � 50%; paired
t-test between best performance, P � � 0.05, n � 50). In
contrast, our ability to decode reach direction was similar
between the schedules (CS: 80.5 � 4.3%, VS: 78.7 � 4.5%,
chance � 25%; paired t-test, P � 0.04, n � 50; Fig. 4C,
bottom). Decoding reach direction and reward magnitude
simultaneously was significantly better during the constant
schedule (CS: 68.3 � 5.7%, VS: 51.6. � 6.4%, chance �
12.5%; paired t-test, P �� 0, n � 50; Fig. 4C, middle).
Thus decoding the same reward magnitude (with or without
direction) was unreliable, as performance was dependent on
reward schedule. As expected, the decode performance
improved as the number of neurons increased.

Reward Schedule Does Not Affect Behavioral Metrics

We explored the contribution of reach error, reaction time,
and motion time to the dependence of reward sensitivity on
schedule. For both schedules, the reach error, reaction time,
and motion time decreased when large rewards were expected

(example of 1 behavioral session in Fig. 5A). For the popula-
tion, the mean reach error, mean reaction time, and mean
motion time for small- versus large-reward trials, separated by
schedule, are scattered in Fig. 5B. Unlike the neural activity,
however, there was no significant difference in MI across
schedules for all behavioral variables (t-test, P � 0.29, P �
0.44, and P � 0.11 for error, motion time, and reaction time,
respectively; see Fig. 5C). There was a significant change in
MI of reaction times and motion times with reward magnitude
for all (46/46) recording sessions (P � 0.05, permutation test)
for both schedules. Half of the recording sessions (23/46) also
showed significant change in MI between reach error and
reward magnitude. Thus changes in reward magnitude led to
changes in behavior (measured by MI), but this occurred
equally for both schedules. Thus variables that define the
metrics of reaching cannot be exclusively responsible for the
observed dependence on schedule.

Effect of Time Between Schedules on Neural Activity

We next investigated whether the greater separation in
time (or “temporal distance”) between trials of each stimu-
lus in the constant schedule produced the schedule depen-
dence. During the constant schedule, animals spend consid-
erable time receiving a single reward before the reward
magnitude changes. The time difference between small and
large rewards could capture nonspecific temporal or nonsta-
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tionary artifacts. To test for this possibility, we generated
100 random sets of trials, selecting equal numbers of small-
and large-reward trials from all neurons. We then computed
the normalized MI between reward and the firing rates. For
each of these sets, we computed the mean distance (number
of trials) between small-reward trials and the mean distance
between large-reward trials. We then computed the correla-
tion coefficient between the mean trial distances and the
reward discrimination within a set. If indeed there were a
distance effect, then a significant positive correlation will
exist. We did not find a significant correlation in 94.5%
(103/109) of cells, which coincides with our statistical
criterion for chance (P � 0.05).

ARX Model of Neural Activity

We next explored the origin of the influence of reward sched-
ule. Constant- and variable-schedule trials only differ by the
sequence of rewards, suggesting a correlation between firing rate
and reward history. To test this possibility, we used the ARX
model (linear autoregressive with exogenous inputs) to converge
onto a vector of weights that best explained current neural activity
when these weights were convolved with past rewards. This
analysis applies to neurons that are selective to reward magnitude
and are sensitive to reward schedule (P � 0.05, 3-way ANOVA,
main or interaction effect). There were 68 such neurons, and we
refer to them as population I. Figure 6A shows the firing rate of an
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example neuron plotted with the model estimate and the smoothed
firing rate (obtained by convolving the firing rate with a boxcar
function of width 5). The model output is significantly corre-
lated to the firing rate of this neuron (r � 0.21, P � 10�6). IRF
describes the weight of past trial rewards (Fig. 6B). The model
output is a weighted sum of past rewards, with weights in-
creasing and then decreasing with trial lag. At the population
level, the model correlated significantly with the firing rate for
most population I neurons (P � 0.01 for 63/68 neurons, mean
correlation r � 0.36).

To validate the ARX model, we compared it to the paramet-
ric EXP model for all population I neurons (Fig. 6C). The ARX
model was better correlated with neural firing rate for most
neurons. At the population level, there is a significant increase
in explained variance for the ARX model compared with the
EXP model (paired t-test, P � 2.1 � 10�4). The ARX model
was also better correlated with firing rate than the raw, binary
reward signal (paired t-test, P � 7.4 � 10�8) (Fig. 6C). The
ARX model replicated the observed decrease in reward dis-

crimination in the variable schedule compared with the con-
stant schedule (Fig. 6D). Thus the ARX model both fits the
data well and exhibits similar response dynamics. The effective
median duration estimated from the IRF of all population I
neurons (Fig. 6E) was 9.8 trials (4.5, 18.2) (25th and 75th
percentiles) (Orfanidis 1996), suggesting that neurons in MIP
have a median memory of 10 trials.

The ARX model revealed a subset of 35 neurons best fit by
weights that differentiated the input. These 35 neurons (popu-
lation II) were modulated by reward schedule without having
any selectivity for reward magnitude. The modeling analysis
on population II cells showed that a difference between current
trial and past trial rewards best explained the firing rate of these
neurons, with negative model weights for low lags. The model
was significantly correlated with firing rate for just over half of
the cells (P � 0.01 for 17/35 neurons, mean correlation of r �
0.2031). Figure 7A depicts the IRFs (mean � SE) for both
neural populations. The series of negative weights (light gray
curve, Fig. 7A) suggests that these neurons differentiate their

Fig. 6. A and B: ARX model for an example neuron. We used the ARX approach to systematically select the function of reward that best explains the neural
activity. The firing rate of an example neuron (black dots) with the ARX model estimate (solid curve) is shown in A. For comparison, the smoothed firing rate,
obtained by convolution with a boxcar function of width 5, is overlaid on the model output (dashed curve). For visualization only, the modulation by reach
direction was reinstated through multiplication by the mean firing rate per direction. The model output was significantly correlated to the neural response (r �
0.21, P � 10�6). For this example, the impulse response function (IRF), which describes the weight of past trial rewards, is shown in B. Firing rate is
approximated as a weighted sum of past rewards, with weights decreasing with trial lag. C: comparison of ARX and benchmark models. To validate the ARX
model, we compare it to the parametric EXP model and see that the ARX model has comparable or better correlation with neuronal firing rate (circles). At the
population level, there is a significant increase in performance with the ARX model (paired t-test, P � 22.1 � 10�4) relative to the EXP model. Additionally,
the scattered squares compare the correlations of ARX model and the raw, binary reward signal with firing rate, showing that the ARX model also has greater
correlation with neuronal firing rate than the reward signal (paired t-test, P � 7.4 � 10�8). D: difference in reward information between schedules. The predicted
change in reward discrimination, measured as MI with reward, for both reward schedules is shown for all modeled neurons. The dark solid line shows the mean
MI for each schedule. This result replicates the observed phenomena of decreased reward discrimination in neural data (see Fig. 3D) in the variable schedule
compared with the constant schedule. Thus the ARX model exhibits similar response dynamics. E: ARX IRFs. To characterize the resulting ARX models, the
IRFs for all models are shown. The dark solid line shows the average IRF across neurons. In general, there is a weighted sum of past rewards, with weights
decreasing with trial lag. Although our models have infinite impulse responses, we estimated the effective duration of the IRFs to be 9.8 trials (4.5, 18.2) (25th
and 75th percentiles), suggesting that neurons in MIP have a “memory” of �10 trials in the past.
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input, using previous trials to uncover the schedule. The
effective median duration for this population was 6.5 trials
(3.3, 13.6) (25th and 75th percentiles). Figure 7B shows the
peristimulus time histogram (mean � SE) for an example
neuron belonging to population II. This cell shows increased
activity for the variable schedule compared with the constant
schedule during the memory period.

In addition to the ARX model, we used CMI, a complemen-
tary information theoretic approach, to verify that past trials do
indeed modulate current trial neural responses. We estimated
the amount of information about the current trial contained in
previous trials by calculating I(Fern;Rn � 1|Rn) and I(FRn;FRn �

1|Rn � 1); 84% (57/68) and 75% (26/35) of cells from popula-
tions I and II contained information about the current trial in
either past trial firing rates or past trial rewards (P � 0.05,
permutation test). For the majority of neurons, the current trial
reward, past trial reward, and past trial firing rate all contain
independent information regarding current trial firing rate.

Decode Using Haar Wavelet Coefficients

We used Haar wavelet decomposition of the spike train to
increase the dimensions of our model. Wavelet analysis is well
suited for the complexities introduced by the reward schedule
(Mallat 1999). We repeated the classifications of direction,
reward and Direction*Reward, using a model built from a
family of Haar wavelet coefficients (Fig. 8). Overall, decode
accuracy was significantly enhanced for all variables and for
both schedules, although trials from the constant-reward sched-
ule still yielded better results. Decode accuracy for reach
direction was comparable for both schedules (chance � 25%:
CS: 97.4 � 1.7; VS: 95.2 � 2.5%). Decode performance of
reward and Direction*Reward were also significantly im-
proved, especially for the variable schedule trials (black curve,
Fig. 8) (reward, chance � 50%: CS: 93.1 � 5.1%, VS: 79.2 �
5.3; Direction*Reward, chance � 12.5%: CS: 92.6 � 0.5%,
VS: 84.7 � 1.3%).

DISCUSSION

Previously, we found neurons in PRR sensitive to the reward
associated with the reach (Musallam et al. 2004). Reward value
was successfully decoded with reach neurons and improved
our ability to decode reach information. This strategy is con-
sistent with one of the key challenges in neural prosthetic
research: to increase the information that can be extracted from
cortical areas (Tehovnik et al. 2013). Reward can enhance the
functionality of prosthetic systems by providing information
about preferences, decisions, or the state of the patient (An-
dersen et al. 2010). Other strategies can enhance learning or
extinguish bad habits by feeding back the decoded reward
signal. It was unclear, however, whether neural sensitivity to
reward recorded from reach neurons reflects complex decision-
making signals dependent on reward history, available choices,
or other contexts. Previous studies on reach neurons had not
addressed this issue, as trial-by-trial randomization of reward
value can mask these context dependencies of reward. To
validate the utility of reward for prosthetic systems, we investi-
gated the response of reach neurons to identical rewards by
presenting reward value in schedules. Reward schedules intro-
duced contextual dependence by varying the history of reward for
each trial. The memory period firing rate of MIP neurons modu-

lated by reward was found to vary with reward history (repre-
sented here as a reward schedule). The difference in firing rate for
reach trials associated with high and low rewards was greater
during the constant-reward blocks than during the variable-reward
blocks. We did not find schedule-dependent behavioral changes,
suggesting that reward modulates neural activity in MIP.
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Reward-Related Signals in MIP

Reward-related modulation of neurons from other motor
areas during decision-making paradigms has been attributed to
behavioral confounds such as motivation, covarying behavioral
variables, salience, or attention (Desimone and Duncan 1995;
Eason et al. 1969; Hare et al. 2008, 2011; Leathers and Olson
2012; Maunsell 2004; Padoa-Schioppa and Assad 2006). Our
findings do not conclusively rule out these hypotheses for
neurons in MIP, but the observed changes in firing rate re-
sponses between constant and variable schedules (see Fig. 4B)
are unlikely to be caused by behavioral confounds, since we
failed to observe the changes in behavior across schedules (see
Fig. 5C). Our results support the hypothesis that neurons in
MIP are sensitive to reward rather than confounding behavioral
variables.

Our results further imply that neurons in MIP are sensitive to
the history of reward. The constant and variable schedules are
simply block and shuffled trial configurations, composed of
identical large- and small-reward trials. A difference in the
firing rate to identical stimuli that appeared in block and
shuffled trials implies that neural activity is dependent on
reward history. We used a systems identification approach to
model firing rate as a function of past trials. We found that the
firing rate computed by a weighted summation of past rewards
reliably fits the mean firing data for a significant population of
neurons (population I). A smaller population of neurons (pop-
ulation II) was better described by a differential of past
rewards, suggesting that the rate of change of past rewards is
an important modulator of neural activity for these neurons.

A subject’s confusion about the meaning of the cue during
the variable schedule may have contributed to the difference in
neural response between the schedules. If true, then behavioral
metrics between large- and small-reward trials in the variable
schedule should be similar. The significant change in MI
between reward magnitude and behavioral variables during the
variable schedule shows that animals understood cue-reward
associations (Fig. 5). We also eliminated the possibility that
our results were confounded by nonstationary temporal dis-
tance between reward trials caused by a lack of pseudorandom
reward presentation in the constant schedule. We measured the
occurrence of nonstationary artifacts in our data and failed to
find distance effects in 103 of 109 neurons. We also safe-
guarded against such confounds by randomizing the order of
different blocks in different recording sessions.

The dependence of reward sensitivity on reward history in
reach neurons is consistent with experiments probing risk
sensitivity (Buchkremer and Reinhold 2010; Kacelnik and
Bateson 1997). The striatum utilizes information about reward
history during decision-making and action selection (Murani-
shi et al. 2011). Similarly, learning to use a prosthetic device
using M1 signals also relies on the striatum (Koralek et al.
2012). The functional link between premotor neurons and the
reward system may allow for reward manipulations that im-
prove learning and performance of prosthetic devices. Simi-
larly, different reward schedules can reinforce advantageous
behavior or extinguish undesirable behavior (Pipkin and
Vollmer 2009). Human ACC (Behrens et al. 2007), lateral
habenula and dopamine neurons (Bromberg-Martin et al.
2010), neurons in ACCd, prefrontal cortex, and parietal cortex
have reward memories that range over multiple timescales that

can be used to assess multiple strategies before making a
choice (Bernacchia et al. 2011). The dependence of reward
history in MIP may afford similar computations for decision-
making by selecting one of many potential actions (Cisek and
Kalaska 2010).

For each neuron, the information about reward was depen-
dent on schedule. By summing past rewards, a neuron low-pass
filters the reward sequence, filtering unpredictable or volatile
reward sources. Neural sensitivity to the variance of reward
computed from reward history is useful for decision-making
agents and foraging activity (Arnauld and Nicole 1964; Her-
rnstein 1961; Sutton and Barto 1998). Many animals prefer a
low-variance reward source when deciding between a constant
reward source (low variance) or a variable reward source (high
variance), provided the time delay between rewards is not
variable (Kacelnik and Bateson 1997). Similarly, models of
decision-making that incorporate weighted past rewards accu-
rately predict variance sensitivity in animal behavior (Buch-
kremer and Reinhold 2010). The different sensitivities to
identical rewards found between the two schedules may be due
to the small and large variances associated with the constant
and variable schedules.

Consequences for Neural Prosthetic Applications

Using the mean firing rate in the memory period, we were
unable to achieve high decode performance of Direction*Reward
when the reward history was not controlled. Initially, this was
problematic, as schedule degraded reward decoding (Fig. 4).
However, we successfully decoded reward, and simultaneously
decoded reward and reach goal, using Haar wavelet coeffi-
cients computed from the firing rates. The improved decode
accuracy achieved with wavelets suggests that additional in-
formation may be contained in dynamics of the spike trains and
at multiple timescales. This information may be less sensitive
to context, as shown by the high classification rates of behav-
ioral variables. Adding local field potentials to the decode
paradigm may further enhance the success rate (Hwang and
Andersen 2013). We conclude that neural activity in MIP is
sensitive to reach goals and the value of reward at multiple
timescales. Furthermore, MIP is a reliable source of motor and
cognitive information that can enhance prosthetic function.
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