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SUMMARY

Extensive research suggests that the inferior tempo-
ral (IT) population supports visual object recogni-
tion behavior. However, causal evidence for this
hypothesis has been equivocal, particularly beyond
the specific case of face-selective subregions of IT.
Here, we directly tested this hypothesis by pharma-
cologically inactivating individual, millimeter-scale
subregions of IT while monkeys performed several
core object recognition subtasks, interleaved trial-
by trial. First, we observed that IT inactivation
resulted in reliable contralateral-biased subtask-
selective behavioral deficits. Moreover, inactivating
different IT subregions resulted in different patterns
of subtask deficits, predicted by each subregion’s
neuronal object discriminability. Finally, the similarity
between different inactivation effects was tightly
related to the anatomical distance between corre-
sponding inactivation sites. Taken together, these
results provide direct evidence that the IT cortex
causally supports general core object recognition
and that the underlying IT coding dimensions are
topographically organized.

INTRODUCTION

Primate core visual object recognition—the ability to rapidly

recognize objects in the central 10 degrees in spite of naturally

occurring identity-preserving image variability—is thought to

rely on the ventral visual stream, a hierarchy of visual cortical

areas (DiCarlo et al., 2012). Decades of research suggest that

the inferior temporal (IT) cortex, the highest level of the ventral

stream hierarchy, is a necessary part of the brain’s neural

network that underlies core recognition behavior (Logothetis

and Sheinberg, 1996; Tanaka, 1996; Rolls, 2000; DiCarlo et al.,

2012). For example, it has been shown that parallel linear object

discriminants acting on the IT population not only match overall

primate behavioral performance (Hung et al., 2005; Zhang et al.,

2011) but also predict primate behavioral patterns (Sheinberg
and Logothetis, 1997; Op de Beeck et al., 2001; Majaj et al.,

2015), showing that IT is a tight neural correlate of primate

recognition behavior. Quantitative versions of such experiments

have proposed downstream neurally mechanistic models that

successfully link IT population activity to behavior (Majaj et al.,

2015), mechanisms that appear to accurately generalize to all

core object recognition subtasks (e.g., ‘‘car’’ versus ‘‘not car,’’

‘‘face’’ versus ‘‘not face,’’ etc.). While these experiments are

consistent with the hypothesis that IT is a necessary node in

the neural network supporting core object recognition behavior,

they might also be epiphenomenal (Katz et al., 2016; Liu and

Pack, 2017). To directly infer the causal role of IT in this behavior,

it is necessary to bring the IT activity under more direct experi-

menter control (e.g., via the application of pharmacological

agents into IT to silence neurons, etc.) while measuring behavior.

To date, the most successful direct IT manipulations in the

context of object recognition have targeted millimeter-scale

clusters of face-selective neurons in IT (Afraz et al., 2006,

2015; Moeller et al., 2017; Sadagopan et al., 2017). These

studies suggest that neurons in these IT subregions are neces-

sary for at least some basic- and subordinate-level face recogni-

tion behaviors. Beyond this domain, a notable study by Verhoef

et al. (2012) found that manipulation of clusters of 3D-structure-

preferring neurons in IT influenced the categorization of 3D

stimuli as convex or concave. However, results from direct ma-

nipulations of IT in general visual object recognition behavior

have been equivocal at best. Lesions of IT sometimes suggest

the necessity of IT and visual behaviors (Cowey and Gross,

1970; Manning, 1972; Holmes and Gross, 1984; Weiskrantz

and Saunders, 1984; Biederman et al., 1997; Buffalo et al.,

2000), but the resulting behavioral deficits are often contradic-

tory (often with no lasting visual deficits; Dean, 1974; Huxlin

et al., 2010) and surprisinglymodest even for large-scale bilateral

removal of IT (e.g., 10%–15% drop in performance when com-

plete loss of performance would have been 40%) (Horel et al.,

1987; Matsumoto et al., 2016). Thus, it is still unclear whether

IT is a necessary node in supporting general core object recog-

nition behavior. Moreover, even if the IT cortex is indeed neces-

sary for all core object recognition subtasks, it is unclear whether

that assumed causal role is spatially organized. For example, the

current literature on monkey IT is consistent with the hypothesis

that every square millimeter of the IT cortex outside of the fMRI-

defined face patches is equally involved in all (non-face) object
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Figure 1. Experimental Design and Hypothesis

(A) Schematic of experiment. It is still unclear whether IT is necessary for general core object recognition behavior, and, moreover, whether any such causal role is

functionally specific at the millimeter scale. To investigate this, we reversibly inactivated individual arbitrarily sampled millimeter-scale regions of IT via local

injection of muscimol while monkeys performed a battery of pairwise core object recognition subtasks (listed, highlighted in blue), interleaved trial by trial (see B).

The inset shows an MRI coronal slice highlighting the ventral surface of IT, the region targeted for inactivation experiments. These subtasks were pseudo-

randomly selected from the large set of pairwise discriminations that animals were previously trained on, with the explicit goal of testing ‘‘arbitrary’’ basic-level

object recognition subtasks. Bar plots outline alternative possible outcomes corresponding to different patterns of behavioral deficits from such inactivations,

varying in subtask selectivity from highly specialized (far left panel, exhibiting deficits only for face versus non-face discriminations), to largely uniform (middle

three panels, exhibiting equal deficits on all discrimination subtasks, or all non-face discrimination subtasks), to relatively subtask-selective (far right panel,

exhibiting deficits on some but not all discrimination subtasks).

(B) Behavioral paradigm. Each trial was initiated when the monkey acquired and held its gaze on a central fixation point for 200 ms, after which a test image (838

degrees of visual angle) appeared at the center of gaze for 100 ms. After extinction of the test image, two choice images, each displaying a single object in a

canonical viewwith no background, were immediately shown to the left and right. One of these two objects was always the same as the object that generated the

test image (i.e., the correct choice), and its location (left or right) was randomly chosen on each trial. The monkey was allowed to freely view the choice images for

up to 1,000 ms and indicated its final choice by holding fixation over the selected image for 700 ms. A juice reward was delivered immediately after each correct

trial. Note that we refer to each pairwise object discrimination (averaged over all test images) as a ‘‘discrimination subtask’’ and the trials for all such subtasks

(6–10 subtasks, see STAR Methods) were pseudo-randomly interleaved trial by trial.
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discriminations, with some authors implicitly arguing for that hy-

pothesis (Tsao and Livingstone, 2008; Kanwisher, 2010).

To investigate these open questions, we reversibly inactivated

neurons in individual, arbitrarily sampledmillimeter-scale regions

of the ventral surface of IT via local injection of muscimol (a single

injection of 1 ml of muscimol, corresponding to strong neural sup-

pression in a volume� 2:5mm in diameter, centered at the injec-

tion site; Arikan et al., 2002)whilemonkeysperformedabattery of

pairwise core object discrimination subtasks, interleaved trial by

trial. This paradigm allowed us not only to test the aforemen-

tioned IT-to-behavior linking hypotheses directly (Majaj et al.,

2015) but also to characterize the causal role of each inactivation

IT site via a pattern of deficits over object recognition subtasks.

Our results show that inactivation of even single, millimeter-

scale regions of IT resulted in reliable contralateral-biased

behavioral deficits. Interestingly, these deficits were highly se-

lective over core object recognition subtasks—inactivating a

small region of IT produced deficits in only a subset of such sub-

tasks, and inactivating different such regions resulted in different

patterns of object recognition deficits. Furthermore, the effect of

inactivation was topographically organized in that the pattern
2 Neuron 102, 1–13, April 17, 2019
of behavioral deficit (i.e., the pattern over subtasks) was most

similar at anatomically neighboring injection sites. We also found

that each pattern of subtask deficit was well predicted by the

object discriminability of the local region’s neuronal activity.

Taken together these results demonstrate the necessity of the

IT cortex for a wide range of general core object recognition

behaviors and reveal that—even outside of face patches—the

IT cortex has behaviorally critical topographic organization of

visual features. These findings are consistent with and sug-

gested by prior physiology work (Wang et al., 1998; Tsunoda

et al., 2001; Kreiman et al., 2006 for sub-millimeter columnar

organization; Lafer-Sousa and Conway, 2013; Conway, 2018

for broad spatial organization of IT), but, to our knowledge, this

is the first demonstration of a topographically organized causal

role of IT in general core object recognition.

RESULTS

Our primary goal was to ask whether IT causally supports ob-

ject recognition, and whether any such causal role is function-

ally specific at the millimeter scale, as schematized in Figure 1A.



Figure 2. Example Inactivation Experiment

Example inactivation experiment. Behavioral performance (mean) for each of six subtasks over the three condition (pre-control, inactivation, and post-control;

see STARMethods) is shown at left. Data are shown as behavioral performance relative the average of pre- and post-control performances (see STARMethods)

(bars show SEM obtained by bootstrap resampling over trials). The location of the injection site (‘‘inactivation’’ condition) for this experiment is shown in the right

panel. The dark and light shaded areas correspond to one and two SEM respectively of this control. For this site, we observed a strong and significant deficit for

some subtasks (chair versus dog, chair versus plane, and dog versus bear) but not others (elephant versus bear or dog versus elephant). The data on the left are

summarized relative to the average control performance (mean ± SEM over trials) in the right panel. The inset shows an MRI coronal slice highlighting the

anatomical location and extent of the inactivation.
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To do this, we reversibly inactivated individual, arbitrarily

sampled millimeter-scale regions of the ventral surface of IT

via injection of 1 ml of muscimol while monkeys performed

a battery of pairwise core object discrimination subtasks. For

this volume of injection, we expect strong neural suppression

in a volume � 2:5 mm in diameter centered at the injection

site (Arikan et al., 2002). Figure 1B shows the behavioral para-

digm used for testing monkeys’ core object recognition

behavior. In this work, the battery consisted of 6 (Monkeys 1

and 2) or 10 (Monkey 2 only) pairwise core object discrimination

subtasks between five objects, interleaved trial by trial (see

Figure 1A for subtask list). These subtasks were pseudo-

randomly selected from the large set of pairwise discrimina-

tions that animals were previously trained on, with the explicit

goal of testing ‘‘arbitrary’’ basic-level object recognition sub-

tasks. To enforce true object recognition (rather than image

matching), stimuli consisted of naturalistic synthetic images

of 3D objects rendered under high view uncertainty (see

Figure S1A for example images), and the monkey subjects

were required to generalize to new images in each subtask

(as we have previously shown they readily do; Rajalingham

et al., 2015).

Figure 2 shows the behavioral data for an example inacti-

vation experiment in Monkey 1 for each of six pairwise discrim-

ination subtasks. Each panel on the left shows the relative

behavioral performance (mean ± SEM, obtained by bootstrap

resampling over trials) for a given pairwise subtask for each of

three consecutive behavioral sessions (pre-inactivation control,
inactivation, and post-inactivation control; see STAR Methods).

Performance on each subtask is shown relative to the average

performance on that subtask over the pre- and post-control

sessions; this definition of control behavior aims to be robust

to natural variability in performance across behavioral sessions

(see STAR Methods). The dark- and light-shaded areas corre-

spond to one and two SEM of this measure (computed over

trials), respectively. We observed a strong and significant

deficit due to inactivation for some subtasks (i.e., chair versus

dog, chair versus plane, and dog versus bear) but not others

(elephant versus bear or dog versus elephant). The resulting

pattern of behavioral deficits (i.e., the deficit pattern over sub-

tasks) for this one example inactivation site in IT is shown on

the right panel, with the corresponding anatomical location

shown in the inset.

Summary of Behavioral Deficits
Figure 3A shows the behavioral deficits for all inactivation sites

and all subtasks in both monkeys as a scatter of control perfor-

mance versus inactivation performance (n = 25 sites, n = 182

subtasks 3 sites). Considering all the subtasks together, we

observed a significant decrease in performance (i.e., inactivation

lower than control), corresponding to the predominance of

points under the unity line in Figure 3; on average, this amounted

to a global deficit of hDd0i= � 0:2± 0:02 (p< 10�15, one-tailed

exact test; see Figure 3B, red bar under ‘‘global deficit’’). Addi-

tionally, we observed global changes in balanced accuracy

ðm= � 2%;p< 10�5Þ and choice bias ðm= � 0:23;p< 10�2Þ
Neuron 102, 1–13, April 17, 2019 3



A B Figure 3. Summary of Inactivation Effects

(A) Behavioral deficits for all IT inactivation sites

and all subtasks in both monkeys as a scatter of

control performance and inactivation performance.

Note the on-average decrease in performance

corresponding to predominance of points under the

unity line (dashed line).

(B) Summary of behavioral deficits when grouping

the subtasks and subtask images in different ways.

Red bars show the magnitude of inactivation deficit

(relative to control) for each grouping. From left

to right, these groupings are: all images and all

subtasks (‘‘Global’’), ipsilateral/contralateral object

images for all subtasks (‘‘Ipsi’’ and ‘‘Contra’’), the

least/most affected subtask at each site (‘‘Least’’

and ‘‘Most’’) selected on held out data, and contra-

lateral object images for the least/most affected

subtask at each site (‘‘Most Contra’’) selected on

held out data. Blue bars correspond to otherwise

identical experiments but without muscimol inacti-

vation (control experiments).
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(Figure S2A). Here, we focus our analyses with respect to

changes in sensitivity ðd0Þ for principled reasons (see STAR

Methods).

Consistent with the known lateralization of IT (Op de Beeck

and Vogels, 2000), this deficit was more pronounced for images

in which the center of the target object was contralateral to the

injection hemisphere (hDd0i = � 0:26±0:03, p< 10�15) than for

images with ipsilateral object centers (hDd0i = � 0:17±0:03,

p< 10�11), and this difference was significant (p = 0:0128,

one-tailed exact test; ipsi versus contra). Note that all images

were presented foveally, spanning �4� to 4� of both azimuth

and elevation, and average object size was � 3:5�.
Next, we askedwhether the inactivation deficits were subtask-

specific. To examine this, we compared themagnitude of behav-

ioral deficits between the least-affected and most-affected sub-

tasks for each inactivation site. Crucially, to avoid any selection

bias, these subtasks were selected from held-out data: we split

our data into two disjoint halves of trials, selected the least- and

most-affected subtasks per inactivation site from one split half,

and examined the corresponding deficits on these selected sub-

tasks in the second split half (thus, the expected value of the dif-

ference in deficits between the most and least affected subtask

is zero under the null hypothesis; see STARMethods). Using this

procedure, we observed a large significant behavioral deficit

for the most affected subtask (hDd0i = � 0:44±0:08, p< 10�15)

but not for the least-affected subtask (hDd0i = � 0:06±0:08,

p = 0:27), and the difference was significant ðp< 10�3; see

Figure 3B). Finally, we observed even larger subtask-selective

deficits when restricting to contralateral objects (as described

above), with a similar significant difference between the most-

and least-affected subtasks (hDd0i= � 0:56± 0:10;�0:14±0:11

for most- and least-affected subtasks, respectively; p< 10�2).

For each of the analyzed conditions, we observed no signifi-

cant behavioral deficits on otherwise identical experiments

without muscimol inactivation ðp> 0:05; Figure 3B, blue bars).

Furthermore, the patterns of deficits across these analyzed con-

ditions were similar for both animals (Figure S3A). In summary,

inactivation of local regions of IT resulted in highly reliable
4 Neuron 102, 1–13, April 17, 2019
behavioral deficits, which were selective over visual space (i.e.,

contralateral-biased) and selective over different core object

recognition subtasks. For the remaining analyses, we focus on

‘‘contralateral stimuli’’ (i.e., images in which the center of the

target object was contralateral to the injection hemisphere) to

characterize the behavioral effects of focal IT inactivation.

Figure 4 shows the deficit patterns for each of the 25 individual

inactivation sites, formatted as in Figure 2. We qualitatively

observe that behavioral performance on one or more, but not

all, object discrimination subtasks is typically reduced by inacti-

vation of each IT site, and that the specific subtask(s) affected

are different at different IT sites. The average behavioral effect

over subtasks was negative (consistent with a behavioral deficit)

for a significant proportion of individual sites (see Figure 4, Venn

diagram; significantly negative effect: 40%;p = 0:003; c2 test for

proportions). For a small and non-significant proportion of sites,

we observed a positive average behavioral effect over subtasks

(significantly positive effect: 4%;p = 0:86, c2 test); we speculate

that this could reflect random experimental variability. Together,

these results suggest that inactivating different millimeter-scale

regions of primate IT results in deficits in different core object

recognition subtasks (i.e., different patterns of deficits). This

inference is directly and quantitatively tested in the following

analyses.

Task-Selectivity of Deficits

Figure 5A shows the subtask deficit patterns for each of the

25 inactivation sites as a heatmap. Each column corresponds

to the deficit pattern over subtasks from inactivating an individ-

ual IT site, normalized to a fixed color scale (0,1); brighter colors

correspond to larger relative subtask deficits. Consistent with

the inferred subtask-selectivity from Figure 3B, we observed

that each inactivation resulted in a non-uniform behavioral deficit

pattern. This non-uniformity was quantified via a sparsity index

(SI; see STAR Methods), which has a value of 0 for perfectly uni-

form deficit patterns (i.e., where each IT subregion is equally

necessary for all subtasks), and a value of 1 for a perfectly sub-

task-specialized (or ‘‘one-hot’’) deficit pattern (i.e., where each

subregion is necessary for just one of the tested subtasks). We



Figure 4. Individual Inactivation Deficit Patterns

Individual inactivation deficit patterns. Each of the 25 panels shows the inactivation pattern, formatted as in Figure 2, for each of the 25 individual inactivation sites.

Themost-closely neighboring site pairs in eachmonkey are indicated with colored daggers (z). Sites were categorized based on the sign (positive/negative) of the

average behavioral effect over subtasks, with significance of each site assessed by a two-tailed exact test (at p<0.05); the Venn on the bottom right diagram

shows the proportion of sites in each category.
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observed that inactivation of local regions in IT led to highly

non-uniform deficit patterns, on average (SIðdÞ = 0:71±0:05;

mean±SEM over sites, see Figure 3D).

To ground this empirical SI value, we estimated the corre-

sponding SI distributions for different simulated behavioral

deficit patterns with varying degrees of non-uniformity across

subtasks. These simulated deficit patterns were obtained via

random permutations of our data, varying only the proportion

of affected subtasks (see STAR Methods). Crucially, the simu-

lated sparseness distributions preserved a number of key sour-

ces of variance—including the number of sites, the number of

subtasks for each site, the performance on each subtask for

each site, and the average performance deficit (across subtasks)

for each site—because all these sources of variance were fixed

for the empirical and simulated sparseness estimates, and the

random shuffling was done after computing the behavioral

deficits. Figure 5B shows the SI distributions expected from

behavioral deficits of varying degrees of non-uniformity (i.e.,

with 10%;25%;.; 100% of subtasks affected). We observe

that the empirically observed subtask selectivity is significantly

greater than expected from a uniform deficit ðp< 10�15; relative

to simulated 100% affected, i.e., uniform) but significantly less

than expected from a highly sparse deficit pattern ðp< 10�2;

relative to simulated 10% affected). Indeed, the observed SI
estimates correspond to simulation of deficits on � 25% of

tested subtasks.

Importantly, this non-uniformity does not simply reflect

non-uniformity in the behavioral difficulty across subtasks.

Indeed, normalizing each deficit pattern by the behavioral diffi-

culty pattern resulted in normalized deficit patterns that were

not significantly correlated with subtask difficulty (r = 0:06,

p = 0:39) and significantly non-uniform as quantified by sparsity

(SIðdnÞ = 0:74± 0:06; p< 10�5, relative to simulated uniform).

This is also clear from Figure 5A, which shows that inactivation

of different sites led to different deficit weight patterns (left

panel). Accordingly, the deficits were relatively evenly distributed

over the subtasks, as reflected by the approximate uniformity

(except for one subtask, plane versus bear) of the average deficit

pattern over all sites (Figure 5A, rightmost bar). Together, these

results indicate that the non-uniformity of subtask deficits is

not tied to specific subtasks.

Additionally, we tested whether the deficits were evenly

distributed over the five objects across all inactivation sites.

To do this, we computed the pattern of deficits over objects

(one-versus-all performance; see STAR Methods) for each inac-

tivation site, then we estimated the average normalized deficit

and the probability that each of the five tested objects corre-

sponds to the most affected object per inactivation site. As
Neuron 102, 1–13, April 17, 2019 5
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Figure 5. Task-Selectivity of Inactivation Deficit Patterns

(A) The heatmap shows the subtask deficits for each of the 25 inactivation sites, with brighter colors corresponding to larger relative subtask deficits, highlighting

that inactivation of each IT site resulted in a different, relatively sparse, pattern of behavioral deficit. The average deficit pattern over all inactivation sites (right

column) is largely uniform, suggesting that IT, as a whole, is approximately equally involved in each discrimination subtask.

(B) The black bar shows the sparsity (see STAR Methods) of the behavioral subtask deficits over all sites (mean ± SEM over sites). To provide calibration, green

lines show the sparsity values that occur under simulations in which we varied the proportion of truly affected subtasks and used identical sampling noise as our

data (see STAR Methods). Together, these results suggest that inactivation of a single 2.5-mm-diameter region of IT affects 25% of core object discrimination

subtasks, on average.

(C) Distribution of deficits over objects. The left panel shows the normalized deficit
�� �

Dd
0
=d

0 ��
, with respect to a one-versus-all behavioral metric, over each of

the five tested objects (mean ± SEM, over trials). The right panel shows the probability of each of the five objects to be the most-affected object per inactivation

site (mean ± SEM, over trials).
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shown in Figure 5C, the average normalized deficit was not

significantly different across objects, and the estimated proba-

bilities were not significantly different from chance (20%),

consistent with relatively evenly distributed deficits over objects,

across inactivation sites.

Tissue Selectivity of Deficits

Inactivating different anatomical regions of IT resulted in different

patterns of subtask deficits. To directly test this tissue selectivity,

we compared the inactivation deficit patterns between pairs of IT

sites. Pairwise deficit pattern similarity was quantified using a

noise-adjusted correlation (~r; see STAR Methods). We consid-

ered all pairs of inactivation sites, measured within the same

animal and image-set, where the inactivation deficit patterns

of both sites had split-half internal reliability greater than a

threshold q (n= 62 pairs for q = 0:1, but results did not signifi-
6 Neuron 102, 1–13, April 17, 2019
cantly depend on the choice of the threshold q). We measured

the dependence of pairwise deficit similarity on the anatomical

distance between the inactivation sites, where anatomical dis-

tance (d) was computed as the Euclidean distance between

the injection site locations estimated via high-resolution micro-

focal stereo X-ray reconstruction (see STAR Methods). First,

we observed that inactivation deficits are highly replicable

across experiments: the noise-adjusted correlation between

behavioral deficit patterns of neighboring inactivation sites was

near ceiling (~r= 0:92± 0:03 for d < 1mm, mean ± SEM over site

pairs; Figure 6A). In other words, we infer that repeated inactiva-

tion of the ‘‘same’’ anatomical site (within a small margin of error)

leads to reproducible behavior deficit patterns. This is evidenced

by the similar deficit patterns for the most-closely neighboring

pair of inactivation sites in each monkey (highlighted with
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Figure 6. Tissue-Selectivity of Inactivation Effects

(A) Topographical organization. Similarity in behavioral deficit patterns be-

tween pairs of IT injection sites (quantified as noise-adjusted correlation,

y axis) as a function of the anatomical distance between each pair of sites

(x axis). Empirical data are shown as the mean ( ± SEM) of all pairs of sites in

logarithmically-spaced bins of tissue distance (blue points). Note that the

pattern of inactivation-induced behavioral effects is highly replicable in that we

observe very high correlation of effects for repeated experiments at or very

near the originally tested site (near 0 on the x axis). The similarity between any

two inactivation deficits was monotonically related to their anatomical dis-

tance, and a simple exponential model significantly explained this relationship

(see inset). Note that the model correlation was estimated from the raw

empirical data (over all 62 site pairs) and did not depend on the logarithmically

spaced binning.

(B) Response similarity between neighboring neurons in IT cortex, computed

from a previously recorded large-scale high-resolution neurophysiological

dataset (Issa et al., 2013b), highlighting the sub-millimeter scale organization

of IT responses (blue). Expected similarity of mm-scale regions of IT, obtained

by smoothing neural responses at the scale of muscimol inactivation (red).
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daggers (z) in Figure 4). Importantly, this similarity between inac-

tivation deficit patterns did not reflect changes in behavior over

time (e.g., from subtask exposure), as shown in Figure S4B.
Further, we observed that this similarity between the inactivation

deficits of two injection sites was monotonically related to

the anatomical distance between them (Figure 6A, see Fig-

ure S3B for qualitatively similar plots in each animal separately).

A simple exponential decay model (half-max-full-width HMFW =

3:29±1:19mm) significantly explained this relationship (R2 =

0:36±0:12, p< 10�3). Note that the model correlation was esti-

mated from the raw empirical data (i.e., all 62 site pairs), and

did not depend on the logarithmically spaced binning. We veri-

fied that this model correlation is not expected by chance by

fitting the model on randomly shuffled data (R2 = 0:00± 0:13,

p = 0:50).

In an attempt to quantitatively relate this observed topograph-

ical organization of deficits to the underlying spatial organization

of IT, we computed the similarity in image-driven response pat-

terns of pairs of IT neurons, obtained from a previously recorded

large-scale high-resolution neurophysiological dataset (Issa

et al., 2013b). We observed strong spatial organization at a

sub-millimeter scale in IT (see Figure 6B, blue lines). From these

data, we simulated the expected similarity of regions of IT at the

mm-scale expected fromourmuscimol inactivation (Arikan et al.,

2002) (see Figure 6B, red lines) by spatially convolving neural

responses with a boxcar filter with a width of 2.5 mm. We infer

that the observed similarity of neighboring inactivation deficits

(in Figure 6A) is approximately consistent with a combined effect

of the known spatial spread of muscimol (� 2:5mm; Arikan et al.,

2002) and the previously described phenomenon of anatomically

neighboring neurons exhibiting similar patterns of responses

(see Discussion).

Interestingly, although we tested 6–10 subtasks, the observed

patterns of deficits could be reasonably well captured by a lower

number of dimensions. In particular, using principal components

analysis (PCA) on all deficit patterns measured under Experi-

ment 1 (6 subtasks, n = 10, 7 inactivation sites in monkeys M

and P, respectively), we found that the first three (out of six) prin-

cipal components (PCs) captured more than 90% of the total

variance in the deficit patterns. Note that 8 other sites measured

under Experiment 2 in monkey P were not included here, as

those sites were tested with different stimuli (textureless objects)

and different subtasks. We represented this low-dimensional

deficit subspace as a color space by mapping the first three

PCs to RGB values. Figure 7A shows the embedding of each

of the six subtasks tested in both monkeys in this color space,

while the top panel of Figure 7B shows the deficit patterns of

17 inactivation sites projected onto this color space. The bottom

panels of Figure 7B show the anatomical location of the same

17 inactivation sites overlaid on inflated cortical surfaces, each

colored according to the corresponding RGB values obtained

from this color space. Consistent with the inferred topographical

organization in Figure 6A, we observe spatial clustering of

colors in this map, suggesting that individual sites are involved

in different combinations of subtasks, but that nearby sites are

similarly involved (i.e., similarly colored).

Neurally Mechanistic Models That Link IT Activity to

Behavior

Given the observed tissue specificity, we asked to what extent

the observed behavioral deficits could be predicted by the

neuronal activity patterns in the inactivated subregions (e.g.,
Neuron 102, 1–13, April 17, 2019 7
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Figure 7. Visualization of Topographical Organization

Using dimensionality reduction on the behavioral deficit patterns across 17

inactivation sites and 6 subtasks, we obtained a three-dimensional deficit

subspace that captured the majority of variance in deficit patterns. We rep-

resented this deficit subspace as a color space, bymapping the first three PCs

to RGB values.

(A) The embedding of each of the six subtasks tested in both monkeys in this

color space; the hue and saturation of colors are mapped to polar angle and

eccentricity in this visualization, while the third dimension is not shown.

(B)The heatmap (top) shows the deficit patterns of 17 inactivation sites pro-

jected onto the deficit subspace (i.e., the first three PCs); for this visualization,

subspace projections have been normalized to span ½0; 1� for each site. Each

flattened map (bottom) shows the anatomical location of inactivation sites,

each colored according to the corresponding RGB values obtained from this

deficit subspace. Note that only sites measured under Experiment 1 (n = 10 in

monkey M, n = 7 in monkey P) are shown; 8 other sites measured under

Experiment 2 in monkey P were not included here, as those sites were tested

with different stimuli (textureless objects). Consistent with the inferred topo-

graphical organization, we observe spatial clustering of colors in this map,

suggesting that individual sites are involved in some combination of subtasks,

and that neighboring sites are similarly involved (i.e., similarly colored).
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prior to inactivation). The central panel in Figure 8A shows the

location of an example muscimol inactivation site and local elec-

trophysiology sites, co-registered using stereo micro-focal X-ray

reconstruction, and overlaid on a coronal MRI slice. For this

example site in IT, we recorded the activity of eight multi-unit

sites (shown as cyan discs) in close proximity to the injection

site (shown as red disc). Multi-unit activity was recorded in

response to the same images as those used in behavioral

testing, in a passive viewing paradigm (see STAR Methods).

Each sub-panel shows a multi-unit site’s stimulus-locked

firing-rate responses for each of the five objects, averaged

over images. We note that neuronal sites, while heterogeneous,

each exhibit reliable object preferences. Based on local neuronal

responses such as this, we constructed and tested a number of

linking (a.k.a. ‘‘decoder’’) models, each of which maps the local

IT spiking response patterns to a predicted behavioral deficit.

The right panel in Figure 8A shows the predictions from two

example linking models. The local neural response models pre-

dict large deficits for subtasks with images that produce the

largest response from the local neuronal sites. The local neural

discriminability models predict large deficits for subtasks for

which the local neural spiking activity was most discriminative,

as measured by a linear classifier. We qualitatively observe

that the discriminability models better capture the observed

behavioral deficit patterns than the response models for this

example inactivation site. This is quantified in Figure 8B as a

noise-adjusted correlation between predicted and actual behav-

ioral deficits over all inactivation sites with local neuronal record-

ings (n= 11 sites). All discriminability models significantly predict

the inactivation deficits ðp< 0:0001), while the response models

failed to do so ðp> 0:05). This result was consistent across the

two animals (Figure S3C). For each inactivation site and decod-

ing model, we tuned the distance threshold that was used to

select neighboring neuronal sites to best predict the inactivation

deficits; optimal distance thresholds (qd = 2:87±0:264mm)

approximately corresponded to the known spatial spread of

muscimol in the cortical tissue (Arikan et al., 2002). Importantly,

decoding models constructed from distant neural responses

failed to significantly predict inactivation patterns ðp> 0:05;

see Figure 8B, dark bars). In summary, inactivation of milli-

meter-scale regions of IT results in behavioral deficits that are

predicted by the local neuronal discriminability.

DISCUSSION

In this work, we sought to investigate whether and how neural

activity in IT causally supports core object recognition behavior.

Specifically, our goals were to (1) directly test the hypothesis that

IT is a necessary node in the brain’s neural network that underlies

potentially all core object recognition discrimination behavior

(subtasks), and (2) to ask whether any such causal role is func-

tionally organized over the cortical tissue. To this end, we revers-

ibly inactivated individual, arbitrarily sampled millimeter-scale

regions of IT while monkeys performed a battery of arbitrarily

sampled basic-level object discrimination subtasks. With the

explicit goal of testing ‘‘arbitrary’’ basic-level object recognition,

these subtasks were pseudo-randomly selected from the

large set of pairwise discriminations that these animals were
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Figure 8. Relationship of IT Spiking Responses to Patterns of Behavioral Deficits

(A) Left: multi-unit spiking activity recorded serially (prior to inactivation) with a single microelectrode for eight sites sampled within an example IT subregion.

Center: the recording locations (each determined via stereo, micro-focal X-ray; see STARMethods) are plotted here projected into the plane of a single MRI slice

containing the center of the IT inactivated region. Neural responses were measured in a rapid-serial-visual-presentation (RSVP) paradigm with 100 ms on and

100 ms off. Responses were averaged across all images and all repetitions for each object. The decreasing response prior to stimulus onset simply reflects the

offset of the stimulus presented immediately before. Each inset panel shows the spiking activity response to each of five objects aligned to stimulus onset;

each line is the mean activity averaged over all images of each object and all repetitions (40 images/object, � 10 repetitions/image), and the shaded region

corresponds to SEM. Gray bar shows image presentation time (100 ms). Neuronal sites, while heterogeneous, each exhibit object preferences, even when

averaging over images. Right: to determine whether the observed behavioral deficits are predicted by local neuronal activity, we constructed and tested several

decoder models that transform IT response patterns from these 8 multi-unit sites into predictions of behavioral deficits resulting from inactivation (see STAR

Methods). The predictions of two of these models (upper and lower scatterplot) are compared with the measured behavioral deficits for this example IT-inac-

tivation site. Note that larger deficits correspond to more negative values of Dd0 (lower left corner of each scatterplot).

(B) The average predictive power of each of five tested decoder model is shown as the noise-adjusted correlation between predicted and actual behavioral

deficits for all relevant sites (i.e., where we had both the local spiking responses [as in A] and the pattern of behavioral deficits measure on the same set of images).

Each light-colored bar corresponds to a specific decoding model (models DM1–DM5, see STAR Methods) constructed from the local neuronal population. All

local neuronal discriminabilitymodels (blue) were clearly better than the local neuronal responsemodels (green). Dark-colored bars correspond to the exact same

decoding models, constructed from the most-distant neuronal population (i.e., the neuronal population of the most anatomically distant inactivation site). All

decoding models constructed from distant neural population failed to significantly predict inactivation patterns ðp> 0:05Þ.
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previously trained on and did not include any face-related dis-

criminations. Our first contribution is to provide newdirect causal

evidence for the role of IT in core object recognition, which was

both scarce and equivocal, especially beyond the specific case

of face-selective subregions of IT.Moreover, our results revealed

that the causal role of IT in object recognition has topographic

organization at the millimeter scale and is predicted by local

neuronal discriminability. With respect to the outline in Figure 1A,

our data are sufficient to distinguish between the alternative out-

comes (despite not directly testing face-related discriminations),

and strongly support the heterogeneous deficit pattern (right-

most panel in Figure 1A). Together, these advances solidify the

previously presumed causal role of the IT cortex in core object

recognition and could be used to distinguish among alternative

neurally mechanistic (i.e., neural network) models of the ventral

stream and its role in core object recognition behavior, as out-

lined below.

The Hypothesized Role of the IT Cortex in Core Object
Recognition Behavior
Here, we define the decoding hypothesis (a.k.a. linking hypoth-

esis; Brindley, 1960) that motivated the present study and alter-

natives to that hypothesis. First, we hypothesize that the IT cor-

tex is a necessary node in the brain’s neural network that
underlies core recognition behavior (Prediction 1). Stated in

other words, our hypothesis is that core object recognition

behavior causally depends on the firing of neurons in the IT cor-

tex, and, without those spikes, core object recognition behavior

would be at chance (DiCarlo et al., 2012; Majaj et al., 2015).

Importantly, core object recognition behavior is not a single sub-

task, but is a domain of many possible subtasks, including at

least hundreds of pairwise object discrimination subtasks in

monkeys (Rajalingham et al., 2015, 2018). Thus, based on prior

IT recording work (Majaj et al., 2015), our decoding hypothesis

is more specific: each IT neuron is a necessary part of multiple

such subtasks (Prediction 2), which is contrasted with the alter-

native possibility that all non-face-selective IT neurons are

necessary for all non-face-related subtasks. Third, our decoding

hypothesis is that single IT neurons that carry information that

might potentially support each subtask are indeed necessary

for each such subtask, and they are necessary regardless of their

physical location in IT (Prediction 3). This hypothesis is implicitly

stated in (Majaj et al., 2015) and explicitly discussed in (Afraz

et al., 2015). However, because prior work (Tanaka, 1996; Krei-

man et al., 2006; Sato et al., 2009) showed that IT neurons with

similar object feature and image preferences tend to be clus-

tered at millimeter scale, our decoding hypothesis (above) pre-

dicts that each millimeter-scale IT subregion is an enrichment
Neuron 102, 1–13, April 17, 2019 9
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of neurons that are necessary nodes in some object discrimina-

tion subtasks (again, more than one subtask). This is contrasted

with the alternative possibility that each subregion of IT is equally

involved in all object discrimination subtasks. We note that all of

these assumptions (here, collectively called our ‘‘decoding hy-

pothesis’’) and the resultant predictions (Predictions 1–3) were

in place prior to our undertaking of this study, and, indeed,

were the motivation of this study.

Direct Causal Evidence for the Role of IT in Core Object
Recognition
While we cannot yet test all the mechanistic aspects of this de-

coding hypothesis (above), we can test some of its most basic

predictions; to our knowledge, these tests had not yet been

done. To carry out these tests, we adopt the terminology of Ja-

zayeri and Afraz (2017), whereby ‘‘causal’’ dependencies can be

inferred by correlating a dependent variable to an experimentally

controlled variable, in contrast to correlational dependencies,

which are associations between variables that we measure

and may indirectly control, but we do not directly control.

Thus, to infer a causal link between IT activity and behavior,

it is necessary to specifically manipulate activity in IT (e.g., via

the application of pharmacological agents into IT to silence

neurons, etc.) while measuring behavior. Related correlational

dependencies (e.g., via direct manipulation of visual input to

the retinae while measuring variations from both IT activity and

behavior) are consistent with our causal decoding hypothesis

(outlined above) but could also be epiphenomenal (i.e., the

resulting IT activity caused by the stimulus is correlated

with, but does not cause, the behavior). Recently, research in

other behavioral domains has exposed divergences between

correlational and causal dependencies (Katz et al., 2016; Liu

and Pack, 2017), highlighting the need to directly test causal

dependencies.

With respect to Prediction 1 of our stated decoding hypothe-

sis (that IT is necessary for core object recognition), decades of

neurophysiological and neuropsychological research suggest

that activity in IT cortex is a good neural correlate of primate

object recognition behavior (Logothetis and Sheinberg, 1996;

Tanaka, 1996; Rolls, 2000; DiCarlo et al., 2012): individual neu-

rons in the IT cortex are selective to complex visual features

in images and exhibit remarkable tolerance to changes in

viewing parameters (Kobatake and Tanaka, 1994; Ito et al.,

1995; Logothetis et al., 1995; Booth and Rolls, 1998; Rust and

DiCarlo, 2010), and the population of neurons in IT not only

matches overall primate behavioral performance (Hung et al.,

2005; Zhang et al., 2011) but also reliably predicts the behav-

ioral performance on each subtask (Majaj et al., 2015). Taken

together, these results are consistent with our decoding

hypothesis, but could also be epiphenomenal. To this end,

our first major contribution in this work is to provide direct evi-

dence in support of Prediction 1.

Prior to this, causal evidence for the role of IT in core object

recognition has been both scarce and equivocal, especially

beyond the specific case of face-selective regions in IT.

Lesions of IT suggest a coarse causal link between this area

and visual behaviors (Cowey and Gross, 1970; Manning,

1972; Holmes and Gross, 1984; Weiskrantz and Saunders,
10 Neuron 102, 1–13, April 17, 2019
1984; Buffalo et al., 1998; Huxlin et al., 2010; Matsumoto

et al., 2016), but the resulting behavioral deficits are often con-

tradictory (Dean, 1974; Huxlin et al., 2010) and at best modest

(Horel et al., 1987; Matsumoto et al., 2016). For example,

recent work showed that near complete ablation of IT (bilateral

removal of anterior IT) resulted in only mild (10%–15%) deficits

in object categorization (Matsumoto et al., 2016). Such modest

behavioral deficits from large-scale ablations may be due to

limitations of the methodologies and the behavioral assays,

both of which may not be robust to compensatory neural

mechanisms. For example, other visual cortical areas could

be recruited via post-lesion neural plasticity, and behavioral

tasks that explicitly require viewpoint invariance may help miti-

gate such concerns (Weiskrantz and Saunders, 1984). In this

work, we did not test a directly comparable experimental para-

digm (e.g., via complete pharmacological inactivations of all of

IT cortex). Rather, we made focal inactivations of IT subregions

and observed deficits whose effect sizes were largely

commensurate with the very small size of these inactivations.

A handful of studies have reported using focal reversible neural

perturbation tools (e.g., electrical, pharmacological, and opto-

genetic perturbation) to test the stated decoding hypothesis,

but all exclusively targeted spatial clusters of face-selective

neurons in IT, testing the causal role of these regions in basic-

and subordinate-level face recognition behaviors (Afraz et al.,

2006, 2015; Moeller et al., 2017; Sadagopan et al., 2017),

with one notable exception (Verhoef et al., 2012). Thus, our

results provide the most systematic direct causal evidence

for the general decoding hypothesis (i.e., Prediction 1) outlined

above.

The Causal Role of IT in Core Object Recognition Is
Topographically Organized
With respect to Prediction 2 of our stated decoding hypothesis

(that each millimeter-scale IT subregion is necessary for several,

but not all, object discrimination subtasks), our second major

contribution in this work is to provide direct evidence for a sub-

task-selective causal role of IT in core object recognition at the

millimeter-scale. Prior to this, all existing studies have exclu-

sively targeted specific spatial clusters of face-selective neurons

in IT, testing the causal role of these regions in basic- and subor-

dinate-level face recognition behaviors (Afraz et al., 2006, 2015;

Moeller et al., 2017; Sadagopan et al., 2017; Verhoef et al., 2012).

While faces are an especially behaviorally relevant stimulus class

for primates (Tsao and Livingstone, 2008), the experimental bias

toward spatial clusters in ITmay also reflect the spatial resolution

limitations of current neural perturbation tools, which operate on

groups of spatially contiguous neurons at approximately milli-

meter-scale. Given this limitation, the known millimeter-scale

spatial clusters of face-selective regions in IT (Tsao et al.,

2003, 2006; Tsao and Livingstone, 2008) form an intuitively

optimal candidate for testing causal dependencies related to

our decoding hypothesis. We note that similar spatial clustering

of response selectivity has been reported for a small number of

other image groupings besides faces, such as color, disparity,

places, and bodies (Conway et al., 2007; Kornblith et al., 2013;

Lafer-Sousa and Conway, 2013; Verhoef et al., 2015; Popivanov

et al., 2012).
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Importantly, the topographic organization of neurons in IT

is largely unknown and assumed by many to be functionally

random and non-specific beyond these discrete clusters.

To support a general inference, we tested arbitrary sampled

millimeter-scale regions of ventral IT rather than functionally

target inactivation sites. This highlights an important and novel

contribution of our work in testing multiple regions on multiple

subtasks and making inferences into the organization of such

subtasks over the cortical tissue. Interestingly, we found that

inactivation of different regions in ventral IT led to different sub-

task-specific deficits, suggesting some functional specificity for

arbitrarily sampled millimeter-scale regions. Indeed, our data

suggest that each millimeter-scale region in IT is causally

involved in a relatively small proportion (� 25%) of object recog-

nition subtasks, and that anatomically neighboring regions are

similar in this regard. Given that we targeted all inactivations to

mm-scale regions of the ventral surface of IT, it is possible that

other regions in IT (e.g., in the STS or on the lateral surface) could

in principle result in much larger or more selective deficits on

these subtasks. However, there is currently no evidence for or

against this claim, primarily due to a dearth of comparable inac-

tivation studies. (Note that Afraz et al. [2015] and Sadagopan

et al. [2017] differ with regards to stimulus lateralization and

injection volume but are not inconsistent with our findings.)

The causal topographical organization inferred from our results

is consistent with previously reported sub-millimeter scale

columnar organization of neurons in IT (Fujita et al., 1992;

Tanaka, 1996; Wang et al., 1996, 1998; Kreiman et al., 2006)

and broader eccentricity-dependent organization of IT cortex

(Conway, 2018).We speculate that this topographic organization

could reflect a general principle of global cortical layout, whereby

neuronal selectivities are developed in the face of metabolic

constraints (e.g., minimization of connection wiring length;

Chklovskii et al., 2002).

The causal role of IT in core object recognition is predicted

by the local neuronal discriminability. Finally, with respect to

Prediction 3 of our decoding hypothesis, we found that behav-

ioral deficits from inactivating millimeter-scale regions of IT are

consistent with predictions from a spatially distributed readout

of neurons in IT (Majaj et al., 2015). Indeed, inactivation deficits

were well predicted by local neuronal discriminability decoding

models, suggesting that the causal role of each IT subregion is

well approximated by the information that is coded explicitly

(i.e., linearly separable) by the local population of neurons. In

contrast, inactivation deficits were not well predicted by spe-

cific local neural response readout models, which predict that

neurons that respond highly to particular stimulus classes,

without encoding the differences between them in a linearly

separable manner, are causally involved in discrimination be-

tween these classes. None of the tested decoding models

perfectly explain the inactivation deficits, potentially due to

data limits. In the current work, we did not have sufficient neu-

ral sampling to directly test population decoding models (e.g.,

by simulating perturbations on a localized sub-population

within a representative sample of all of IT and measuring the re-

sulting simulated behavior). Nevertheless, our results are

consistent with at least one decoding hypothesis (Majaj et al.,

2015) (Figure 8B).
Importantly, our results speak directly to questions of long-

standing interest in systems and cognitive neuroscience, in

particular for the human neuroimaging community. A belief

held by many in this field is that the overall responsiveness of a

cluster of neurons is indicative of its causal role in behavior.

For example, one might conclude that face-selective regions,

which respond preferentially to images of faces, must causally

support face detection and discrimination behaviors (Tsao and

Livingstone, 2008). Similarly, one might make the inverse infer-

ence that clusters of neurons that don’t preferentially respond

to faces on average, regardless of whether they contain explicit

subtask-relevant information, do not causally support such face-

related subtasks. An alternative hypothesis, used as the basis for

techniques such asmulti-voxel pattern analysis (MVPA) (Norman

et al., 2006), is that the behavioral role of a cluster of neurons

is not determined by its responsiveness, per se, but by its

discriminability (i.e., its subtask-explicit information content).

However, it is still under debate whether such explicitly available

information carried by that cluster of neurons is in fact ‘‘used’’ by

the brain to produce behavior, or is epiphenomenal (Williams

et al., 2007).

To date, there have been a handful of attempts in human

cognitive neuroscience to resolve this debate and discriminate

between these alternative hypotheses using coarse perturba-

tions of neural activity (e.g., transcranial magnetic stimulation

and electrical stimulation; Parvizi et al., 2012; Schalk et al.,

2017; Pitcher et al., 2007). In this study, we were able to both

record from and inactivate the neuronal activity in arbitrarily

selected millimeter-scale regions in primate IT. In contrast to

previous human cognitive neuroscience studies, we found that

responsiveness is not at all predictive of the behavioral deficits

resulting from inactivation. Instead, our results are consistent

with a decoding hypothesis based on neuronal discriminability

(Majaj et al., 2015; Afraz et al., 2015) and demonstrate that one

should not conclude that a cluster of neurons that preferentially

responds to a particular group of stimuli causally supports the

ability to discriminate between stimuli within that group.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and surgery
Two adult male rhesus macaque monkeys (Macaca mulatta, subjects M, P) were trained on the core object recognition paradigm

described below. For each animal, a surgery using sterile technique was performed under general anesthesia to implant a titanium

head post to the skull using titanium screws, and a cylindrical recording chamber (19 mm inner diameter; Crist Instruments)

over a craniotomy targeting the temporal lobe in the left hemisphere from the top of the skull (Monkey M, +13 mm posterior-

anterior, +16.3 mm medial-lateral, 15� medial-lateral angle; Monkey P, +13 mm posterior-anterior, +14.75 mm medial-lateral,

15� medial-lateral angle). All procedures were performed in compliance with the guideline of National Institutes of Health and the

American Physiological Society, and approved by the MIT Committee on Animal Care.

METHOD DETAILS

Core object recognition behavioral paradigm
Core object discrimination is defined as the ability to discriminate between two ormore objects in visual images presented under high

view uncertainty in the central visual field (� 10�), for durations that approximate the typical primate, free-viewing fixation duration

(� 200 ms) (DiCarlo and Cox, 2007; DiCarlo et al., 2012). As in our previous work (Rajalingham et al., 2015, 2018), we investigate

this behavior using batteries of trial-by-trial interleaved set of pairwise object discrimination subtasks. The behavioral paradigm is

described below. Behavioral data was collected under head fixation, and subjects reported their choices using their gaze. We moni-

tored eye position by tracking the position of the pupil using a camera-based system (SR Research Eyelink 1000). Images were pre-

sented on a 27’’ LCDmonitor (19203 1080 at 60 Hz; Samsung S27A850D) positioned 44 cm in front of the animal. At the start of each

training session, subjects performed an eye-tracking calibration subtask by saccading to a range of spatial targets and maintaining

fixation for 800ms. Calibration was repeated if drift was noticed over the course of the session.

Figure 1B illustrates the behavioral paradigm. Each trial was initiated when themonkey acquired and held gaze fixation on a central

fixation point for 200ms, after which a test image (838� of visual angle in size) appeared at the center of gaze for 100ms. Trials were

aborted if gaze was not held within ± 2+. After extinction of the test image, two choice images, each displaying a single object in a

canonical view with no background, were immediately shown to the left and right (each centered at 8+ of eccentricity along the hor-

izontal meridian; see Figure 1B). One of these two objects was always the same as the object that generated the test image (i.e., the

correct choice), and its location (left or right) was randomly chosen on each trial. The object that was not displayed in the test image is

referred to as the distractor object, but note that objects are equally likely to be distractors and targets. The monkey was allowed to

freely view the choice images for up to 1000ms, and indicated its final choice by holding fixation over the selected image for 700ms.

The monkey was rewarded with a small juice reward for each correct trial. After the end of each trial, another fixation point appeared,

cueing the next trial. Each trial consisted of a different randomly selected pairwise object discrimination subtask. Note that each pair-

wise subtask is operationally defined by the pair of choice objects at the end of the trial, and we ensure that the test images are

chosen in a balanced way such that approximately half of the trials begin with test images of one object and the other half of the trials

begin with test images of the other object. Performance of each such ‘‘pairwise subtask’’ is the primary unit of measure in this

study (averaged over all test images of each object, unless otherwise noted). Note that, because the trials of each such pairwise

discrimination subtask are randomly interleaved, the subject cannot anticipate which object will be shown or which pair of object

choices will appear after the test image. Real-time experiments for monkey psychophysics were controlled by open-source software

(MWorks Project http://mworks-project.org/).

MATLAB MathWorks MATLAB 9.2 (R2017a)
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Both animals were previously trained on other images of other objects, and were proficient in discriminating among over 35 arbi-

trarily sampled basic-level object categories (i.e., several hundreds of possible pairwise object discrimination subtasks). In this study,

five randomly selected basic-level objects were tested (bear, elephant, dog, airplane, and chair). While other (unpublished) work

suggests that more objects are needed to fully exercise the domain of core object recognition, in this study our primary goal was

to balance between spanning that domain and collecting enough behavioral trials to detect even subtle changes in discrimination

performance that might result from suppression of IT subregions. Our choice of five objects resulted in ten possible pairwise object

discrimination subtasks (see Figure 1A for complete list). To accumulate enough trials to precisely measure performance for each

subtask within a single behavioral session (i.e., a single experimental day), we sub-selected six of these ten subtasks for most

experiments. For a subset of experiments in one animal (monkey P, experiment 2), we tested all ten pairwise subtasks. For each

session, monkeys were tested for several hours (until satiation) and performed a large number of trials (monkey M: 3442±1097,

monkey P: 4430±942; mean ± SD).

Test images
Weexamined basic-level object recognition behavior by generating test images of the five objects (above) that were synthesized from

the five computer models of each object. As in prior work (Rajalingham et al., 2015, Majaj et al., 2015), the goal was to use naturalistic

images that also exercised the view invariance challenges of core object recognition, as such images are excellent at differentiating

between low-level representations and primate behavior. The image generation pipeline is described in detail elsewhere (Majaj et al.,

2015). Briefly, each image was generated by first rendering the object with randomly chosen viewing parameters (2D position, 3D

rotation and viewing distance), and then placing that foreground object view onto a randomly chosen, natural image. Object models

spanned basic-level object categories (bear, elephant, dog, airplane, and chair). Background images were sampled randomly from a

large database of high-dynamic range images of indoor and outdoor scenes obtained from Dosch Design (http://www.doschdesign.

com). This image generation procedure enforces invariant object recognition as it requires the animal to tackle the invariance

problem, the computational crux of object recognition (Ullman, 1996; Pinto et al., 2008). Note that this design is in contrast

to many prior perturbation studies of IT cortex in which the subject is required only to match one image to that same image

(a.k.a. standard ‘‘match-to-sample’’) (Horel et al., 1987; Biederman et al., 1997), while here the subject must match any possible

image of an object to a visual token (canonical view) that stands for that object.

The majority of the behavioral data presented here were collected in response to a base image set generated from the five objects

(40 test images of each object, 200 test images in total). We additionally generated a variant of this dataset consisting of texture-less

images of the same objects. These texture-less images were targeted to both titrate the subtask difficulty and further remove poten-

tial low-level confounds (e.g., luminance and contrast). This texture-less image set was not held fixed in size: on each behavioral ses-

sion, we tested subjects on amixture of 20%previously seen and 80%completely novel texture-less images of the same five objects,

to mitigate potential memorization strategies. For the purpose of the current work, we treat both of these image sets as equivalent,

namely as images of the same five objects under study differing only in their precise generative parameters. Figure S1A shows

example two images for each object, from both image sets.

Physiology and pharmacology
In each animal, we first recorded multi-unit activity (MUA) from randomly sampled sites on the ventral surface of IT (monkey M:

57 multi-unit sites, monkey P: 43 multi-unit sites). Recordings in each animal were made over a period of several weeks using

glass-coated tungsten micro-electrodes (impedance, 0:3� 0:5MU; outer diameter, 310um; Alpha Omega). A motorized micro-drive

(Alpha Omega) was used to lower electrodes through a 26-gauge stainless-steel guide tube inserted into the brain (5mm) and held by

a plastic grid inside the recording chamber (CRIST). We recorded MUA responses from IT while monkeys passively fixated images in

a rapid serial visual presentation (RSVP) protocol (10 images/trial, 100ms on, 100 ms off). To ensure accurate stimulus presentation,

eye position was tracked and trials were aborted if gaze was not held within ± 1:5�. To ensure accurate stimulus locking, spikes

were aligned to a photodiode trigger attached to the display screen. Multi-unit responses were amplified (1x head-stage), filtered

(250Hz cutoff), digitized (sampling rate of 40kHz) and sorted (Plexon MAP system, Plexon Inc.). For each image and multi-unit

site, the image response patterns were obtained by first averaging MUA over many (� 10) image repetitions, and computing the

number of repetition-averaged spikes in two post-stimulus windows (70-170ms, 170-270ms)

Following this mapping stage, we performed inactivation experiments using focal microinjections of muscimol, a potent GABA

agonist (Andrews and Johnston, 1979). We varied the location of microinjections to randomly sample the ventral surface of

IT (from approximately + 8mm AP to approx + 20mm AP). Given the relatively long half-life of muscimol, inactivation sessions

were interleaved over days with control behavioral sessions. Thus, each inactivation experiment consisted of three behavioral ses-

sions: the baseline or pre-control session (1 day prior to injection), the inactivation session, and the recovery or post-control session

(2 days after injection). Each inactivation session began with a single focal microinjection of 1ml of muscimol (5mg/mL, Sigma Aldrich)

at a slow rate (100nl/min) via a 30-gauge stainless-steel cannula at the targeted site in ventral IT. Injections were made through a

simple microinjection circuit consisting of a three-way valve (Labsmith) and marker line (similar to [Noudoost and Moore, 2011]),

enabling precise monitoring of the flow and volume of muscimol injected. In pilot experiments, we verified complete neural suppres-

sion at the location of injection using custom-built single-use injectrodes (Noudoost and Moore, 2011). Given this volume of musci-

mol, we estimate strong neural suppression within a local region of � 2:5mm in diameter for up to six hours after injection
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(Arikan et al., 2002). After completion of the injection, we waited 10-20 min before measuring the monkey’s behavior on a battery of

object recognition subtasks for up to 3 hours post-injection.

To ensure accurate targeting of IT and reconstruction of the relative positions of injection and recording locations, all electrophys-

iological recordings and pharmacological injections were made under micro-focal stereo X-ray guidance (Cox et al., 2008). Briefly,

monkeys were fitted with a plastic frame (3 3 4 cm) positioned near the temporal lobe using a plastic arm anchored in the dental

acrylic implant. The frame contained six brass fiducial markers (1mm diameter) of known geometry, measured using micro-CT.

The fiducial markers formed a fixed 3D skull-based coordinate system for registering all physiological recordings and pharmacolog-

ical injection sites. At each site, two X-rayswere taken simultaneously at near orthogonal angles, and the 3D location of the electrode/

cannula tip was reconstructed relative to the skull using stereo-photogrammetric techniques. This procedure enables high-resolution

reconstruction (< 200um error) of electrode and cannula locations across experimental sessions (Cox et al., 2008; Issa et al., 2013a).

Under assumptions of approximate planarity for the ventral surface of IT, we measured the distance between sites in IT using the

Euclidean distance between X-ray reconstructed 3-D coordinates.

In total, we collected data for 25 inactivation experiments, with each inactivation experiment consisting of three consecutive

behavioral sessions each, in two monkeys (monkey M: n= 10 experiments, monkey P: n= 15 experiments). Interleaved within this

inactivation data collection, we additionally collected behavioral data for 18 control experiments, where each experiment again

consisted of three consecutive control behavioral sessions each, with the same images and subtasks but with no injections, in

both monkeys (monkey M: n= 5 experiments, monkey P: n= 13 experiments). These control data were used to estimate the natural

variability in performance across behavioral sessions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral metrics
Wepreviously introduced several metrics to characterize behavior in this pairwise object discrimination paradigm (Rajalingham et al.,

2018). Here, we focus on the highest resolution behavioral metric that can be reliably measured in a single behavioral session,

the one-versus-other object level performance metric (previously termed B.O2). Briefly, this metric is a pattern of pairwise object

discrimination performances. Note that the distributions of images of each object were comparable across inactivation experiments,

with the exact same 40 images/object across all sessions of experiment 1, and 100 images/object generated with the exact same

generative parameters for experiment 2. For each pairwise object discrimination subtask, performance was estimated using a

sensitivity index d0 (Macmillan, 1993): d0 = Zðhit rateÞ� Zðfalse alarm rateÞ, where Zð:Þ is the inverse of the cumulative Gaussian

distribution. All d0 estimates were constrained to a range of ½0;5�.
Recall that each inactivation experiment consisted of three behavioral sessions. We first equated the number of trials per session

by selecting the first N trials of each session, where Nwas the minimum number of trials across the three sessions. For each of these

three behavioral sessions, we then computed a pattern of performances across subtasks. We observed a small amount of variability

in performance between the pre- and post-control behavioral sessions that was consistent with the effects of learning (see Figure S4A

for quantification). To ensure that out measurements of the inactivation deficits were robust to this background variability, we defined

the control behavioral performance as the average of the pre-control and post-control performances: jcontrol = ðjprecontrol +

jpostcontrolÞ=2. To measure the behavioral deficit from inactivation, we estimated a behavioral deficit pattern (d) as the difference

between inactivated and control performance over subtasks:

d=jinactivated � jcontrol

We additionally estimated a normalized behavioral deficit pattern as

dn =
jinactivated � jcontrol

jinactivated +jcontrol

For one set of analyses (Figure 6C), we characterized behavior using the one-versus-all object level performancemetric (previously

termed B.O1), corresponding to a pattern of discrimination performances per object. However, an important caveat is that the

distributions of subtasks of each object were not comparable across all experiments, i.e., not all pairwise discrimination subtasks

spanning these objects were tested.

We additionally characterized behavioral performance using several other behavioral metrics: balanced accuracy, choice bias, and

reaction times (see Figure S2). However, we note that the choice of focusing on sensitivity ðd0Þ for this behavioral paradigm is

principled and indeed was made prior to carrying out the experiments (Rajalingham et al., 2015, 2018). The overall behavioral

performance (or accuracy) on a two-alternative forced choice task can be decomposed into sensitivity (measured by a sensitivity

index d0, see above) and bias (measured by a criterion index c= 0:5ðZðhit rateÞ+Zðfalse alarm rateÞÞ (Macmillan, 1993). Importantly,

measuring accuracy alone fails to disambiguate between these two separate components. In addition to this primary caveat,

accuracy is bounded (i.e., sensitive to floor/ceiling effects) and non-linear with respect to the underlying representation in a signal

detection framework (Green and Swets, 1966). In previous work, we observed that patterns of choice bias are much less reliable

(across subjects) than sensitivity (Rajalingham et al., 2015). Here, we additionally observed that a given subject’s choice bias can

substantially vary under natural conditions (see Figure S2B). Finally, in this work, we did not explicitly train the animals on a speeded
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task (e.g., where faster response leads to more reward), and thus do not a priori expect any changes in reaction time. For these rea-

sons, while we observe statistically significant inactivation effects with respect to accuracy and choice bias, we focus our primary

claims on changes in sensitivity.

Sparsity of deficit
We quantified the non-uniformity of the behavioral deficits using a sparsity index SIðxÞ (Vinje and Gallant, 2000) as follows:

AðxÞ=E½x�2
.
E
�
x2
�
;

SIðxÞ= ð1� AðxÞÞ=ð1� 1=NÞ
where E½:� denotes the expectation of, and N is the length of the vector x. When applied to a behavioral deficit pattern with no sam-

pling noise, SIðdÞ, this index has a value of 0 for perfectly uniform deficit patterns, and a value of 1 for perfectly one-hot deficit pattern.

To ensure that the sparsity of the behavioral deficit did not purely reflect non-uniformity in the behavioral difficulty across subtasks,

we additionally computed this index from the normalized deficit pattern vector SIðdnÞ. We computed the SI for each inactivation site,

and estimated the average across all sites.

To ground this empirical SI value in intuition, we estimated the corresponding SI distributions for different simulated behavioral

deficit patterns with varying degrees of non-uniformity across subtasks, and with comparable sampling noise to that in our actual

behavioral data (i.e., a finite number of trials). To estimate the expected SI distribution from a deficit with P% of subtasks affected,

we performed the following simulation. For each inactivation site, we computed an estimate of the deficit pattern (d) from a random

bootstrap sample of trials. From this deficit pattern estimate, we set all but the top P%of deficit values to zero, and randomly shuffled

the position of remaining non-zero entries. We averaged the resulting deficit pattern estimates across bootstrap samples to obtain a

simulated deficit pattern with approximately equal, non-zero deficit on P% of subtasks. Finally, we computed the sparsity index for

this simulated mean deficit pattern. By varying Pð = 10%;25%;.;100%Þ, we obtained estimates of SI distributions expected from

different degrees of non-uniformity across subtasks. Crucially, the simulated sparseness distributions preserved a number of key

sources of variance — including the number of sites, the number of subtasks for each site, the performance of each subtask for

each site, and the average performance deficit (across subtasks) for each site — because all these sources of variance were fixed

for the empirical and simulated sparseness estimates, and the random shuffling were done after computing the behavioral deficits.

Neuronal readout models
To investigate the link between neuronal activity and behavioral deficits, we constructed and tested a number of decoding models

(DMs). Each of these models predicts an inactivation pattern from the activity of neurons recorded in close anatomical proximity to

the injection site. As described above, multi-unit neuronal activity was measured in response to the same images under a passive

viewing paradigm and could thus be used as the input to each decoding model. We constructed a feature matrix R from the firing

rate responses over images (averaged over repetitions) all local multi-unit sites — see below for definition of local. Each tested

decoder model maps R to a behavioral deficit prediction D. The local neural discriminability and local population discriminability

models we tested here were loosely inspired from population readout models of IT (Majaj et al., 2015). Note, however, that the current

implementations do not include the remaining (non-local) IT population as inputs, as we did not have access to a larger sample of IT.

The specific local decoder models we tested here were: local neural response models (DM1, DM2) predict largest deficits for sub-

tasks with images that yielded largest response from the local neuronal sites, and local neural discriminability models (DM3, DM4,

DM5) predict largest deficits for subtasks for which the local neural population wasmost discriminative, asmeasured by a linear clas-

sifier. Crucially, these linear classifiers were not directly fit to the target inactivation patterns, but rather trained to perform on the pair-

wise object discrimination subtasks. The resulting pattern of neural decode predicted performances over subtasks was converted to

the pattern of predicted deficit by simply taking a negative (i.e., the highest performing subtask is the one that is predicted to bemost

reduced by inactivation of the neurons contributing to the decode). The details of these five models are as follows:

1. DM1 (mean neural response): The deficit for each subtask Di;j is estimated as the (negative of) neural response to objects i; j,

averaged over sites and images ðhRisites;imagesÞ.
2. DM2 (weighted mean neural response): The deficit for each subtask Di;j is estimated as the (negative of) neural response to ob-

jects i; j, averaged over sites and images after weighting each site by its overall discriminability w ðhwRisites;imagesÞ.
3. DM3 (local neural response discriminability): The neural image responses averaged over sites, ðhRisitesÞ, is used as a single neural

feature f to train and test a linear SVM. The deficit for each subtask Di;j is estimated as the (negative of) the SVM performance (in units

of d0) to objects i; j, averaged over images.

4. DM4 (local neural discriminability, mass action): Each neural site’s image response ðRsitekÞ, is used as a single neural feature f to

train and test a linear SVM. The deficit for each subtask Di;j is estimated as the (negative of) the SVM performance (in units of d0) to
objects i; j, averaged over images, summed over all sites k.

5. DM5 (local population discriminability): The local neuronal image response (R), is used to train and test a linear SVM. The deficit

for each subtask Di;j is estimated as the (negative of) the SVM performance (in units of d0) to objects i; j, averaged over images.

For each inactivation site, we defined its ‘‘local’’ neural population as all recorded multi-unit sites within a distance of qd from the

inactivation site, where distances were estimated from the X-ray reconstructed electrode and cannula locations. In an effort to be
Neuron 102, 1–13.e1–e5, April 17, 2019 e4



Please cite this article in press as: Rajalingham and DiCarlo, Reversible Inactivation of Different Millimeter-Scale Regions of Primate IT Results in
Different Patterns of Core Object Recognition Deficits, Neuron (2019), https://doi.org/10.1016/j.neuron.2019.02.001
robust to sparse neuronal sampling and X-ray reconstruction error, we fit this hyper-parameter qd to best predict the inactivation

deficit patterns, rather than use a single fixed distance threshold across all inactivation sites. Specifically, we tested a range of qd
values (from 1mm to 4mm, in steps of 0.25mm) and selected the value that yielded the most predictive model. We did not cross-vali-

date this hyper-parameter optimization due to data limits (as the data have already twice been split prior to estimating decoding

model consistency). Note, however, that qd was optimized separately for each decoding model, ensuring that no particular class

of models was disproportionately benefitted. The resulting optimal distance thresholds corresponded to the approximate known

spatial spread of muscimol in the cortical tissue (� 2� 3mm). Furthermore, results are very similar in magnitude without this hy-

per-parameter optimization. To ensure that decodingmodel consistencies do not simply reflect spurious correlations, we additionally

tested the consistency of decoding models constructed from distant neural populations. Briefly, for each tested inactivation site, we

compared the true behavioral deficit pattern with that obtained by the the decoding model prediction from the most distant site.

Noise-adjusted correlations
We measured the similarity between two behavioral deficit patterns d1; d2 (e.g., between true deficit patterns and predictions from a

model) using a noise-adjusted correlation (DiCarlo and Johnson, 1999; Johnson et al., 2002). For each behavioral deficit pattern, we

split all independent raw observations (e.g., behavioral trials) into two equal halves and computed the behavioral deficit pattern from

each half, resulting in two independent estimates of the deficit pattern. We took the Pearson correlation between these two estimates

as a measure of the reliability of that behavioral deficit pattern, given the data, i.e., the split-half internal reliability. To estimate the

noise-adjusted correlation between two deficit patterns, we compute the Pearson correlation over all the independent estimates

of deficits from each, and we then divide that raw Pearson correlation by the geometric mean of the split-half internal reliability of

each deficit:

~rðd1; d2Þ=
rd1 ;d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rd1 ;d1 3 rd2 ;d2
p

Since all correlations in the numerator and denominator were computed using the same amount of trial data (exactly half of the trial

data), we did not need to make use of any prediction formulas (e.g., extrapolation to larger number of trials using Spearman-Brown

prediction formula). This procedure was repeated 10 times with different random split-halves of trials. Our rationale for using a reli-

ability-adjusted correlation measure was to account for variance in the behavioral deficit that is not replicable by the subtask con-

dition. If two behavioral deficits are identical, then their expected noise-adjusted correlation is 1.0, regardless of the finite amount

of data that are collected. The noise-adjusted correlation was used to compute the similarity between observed and predicted

behavioral deficit patterns (e.g., for testing neural readoutmodels), as well as for the similarity between two different behavioral deficit

patterns arising from two different inactivation sites.

Statistical testing
Unless otherwise specified, we estimated the uncertainty in behavioral deficit measurements (i.e., delta, see above) via bootstrap

resampling of trials, repeated 100 times. The standard error of each delta measurement was estimated as the standard deviation

of its bootstrap distribution. For statistical tests, we performed one-tailed exact tests, by computing the empirical probability of

observing a sample below zero. To compute this probability from the empirical bootstrap distribution, we fit a Gaussian kernel density

function to the empirical distribution, optimizing the bandwidth parameter to minimize the mean squared error. This kernel density

function was evaluated to compute a p value, by computing the cumulative probability of observing a positive behavioral delta.

DATA AND SOFTWARE AVAILABILITY

Code and data are available by request to the Lead Contact (dicarlo@mit.edu).
e5 Neuron 102, 1–13.e1–e5, April 17, 2019
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